Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 217-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology of the space of loops on generalized homogeneous spaces is determined by using the Eilenberg–Moore spectral sequence. This generalizes classical results for homogeneous spaces of compact Lie groups.
@article{TRSPY_2006_252_a17,
     author = {F. Neumann},
     title = {Variations on the {Cohomology} of {Loop} {Spaces} on {Generalized} {Homogeneous} {Spaces}},
     journal = {Informatics and Automation},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a17/}
}
TY  - JOUR
AU  - F. Neumann
TI  - Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
JO  - Informatics and Automation
PY  - 2006
SP  - 217
EP  - 223
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a17/
LA  - en
ID  - TRSPY_2006_252_a17
ER  - 
%0 Journal Article
%A F. Neumann
%T Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
%J Informatics and Automation
%D 2006
%P 217-223
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a17/
%G en
%F TRSPY_2006_252_a17
F. Neumann. Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 217-223. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a17/

[1] Borel A., “Sur la cohomologie des espaces fibrés principeaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math., 57 (1953), 115–207 | DOI | MR | Zbl

[2] Baum P.F., “On the cohomology of homogeneous spaces”, Topology, 7 (1968), 15–38 | DOI | MR | Zbl

[3] Dwyer W.G., Wilkerson C.W., “Homotopy fixed point methods for Lie groups and finite loop spaces”, Ann. Math., 139 (1994), 395–442 | DOI | MR | Zbl

[4] Gugenheim V.K.A.M., May J.P., On the theory and applications of differential torsion products, Mem. AMS, 142, Amer. Math. Soc., Providence (RI), 1974 | MR

[5] Kac V.G., “Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups”, Invent. math., 80 (1985), 69–79 | DOI | MR | Zbl

[6] Kuribayashi K., “The cohomology ring of the spaces of loops on Lie groups and homogeneous spaces”, Pacif. J. Math., 163:2 (1994), 361–391 | MR | Zbl

[7] May J.P., Neumann F., “On the cohomology of generalized homogeneous spaces”, Proc. Amer. Math. Soc., 130 (2002), 267–270 | DOI | MR | Zbl

[8] Milnor J.W., Moore J.C., “On the structure of Hopf algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[9] Neumann F., “On the cohomology of homogeneous spaces of finite loop spaces and the Eilenberg–Moore spectral sequence”, J. Pure and Appl. Algebra, 140 (1999), 261–287 | DOI | MR | Zbl

[10] Neumann F., “Torsion in the cohomology of finite loop spaces and the Eilenberg–Moore spectral sequence”, Topol. and Appl., 100 (2000), 133–150 | DOI | MR | Zbl

[11] Rector D., “Subgroups of finite dimensional topological groups”, J. Pure and Appl. Algebra, 1 (1971), 253–273 | DOI | MR | Zbl

[12] Smith L., “The cohomology of stable two stage Postnikov systems”, Ill. J. Math., 11 (196), 310–329 | MR | Zbl

[13] Smith L., “Homological algebra and the Eilenberg–Moore spectral sequence”, Trans. Amer. Math. Soc., 129 (1967), 58–93 | DOI | MR | Zbl

[14] Smith L., “Cohomology of $\Omega(G/U)$”, Proc. Amer. Math. Soc., 19 (1968), 399–404 | DOI | MR | Zbl

[15] Smith L., “On the Eilenberg–Moore spectral sequence”, Algebraic topology, Proc. Symp. Pure Math., 22, Amer. Math. Soc., Providence (RI), 1971, 231–246 | MR

[16] Smith L., Polynomial invariants of finite groups, Res. Notes Math., 6, A.K. Peters, Wellesley (MA), 1995 | MR | Zbl

[17] Tate J., “Homology of Noetherian rings and local rings”, Ill. J. Math., 1 (1957), 14–27 | MR | Zbl