Deformations of Filiform Lie Algebras and Symplectic Structures
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 194-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study symplectic structures on filiform Lie algebras, which are nilpotent Lie algebras with the maximal length of the descending central sequence. Let $\mathfrak g$ be a symplectic filiform Lie algebra and $\dim \mathfrak g=2k\ge 12$. Then $\mathfrak g$ is isomorphic to some $\mathbb N$-filtered deformation either of $\mathfrak m_0(2k)$ (defined by the structure relations $[e_1,e_i]=e_{i+1}$, $i=2,\dots ,2k-1$) or of $\mathcal V_{2k}$, the quotient of the positive part of the Witt algebra $W_+$ by the ideal of elements of degree greater than $2k$. We classify $\mathbb N$-filtered deformations of $\mathcal V_n$: $[e_i,e_j]=(j-i)e_{i+1}+\sum _{l\ge 1}c_{ij}^l e_{i+j+l}$. For $\dim \mathfrak g=n \ge 16$, the moduli space $\mathcal M_n$ of these deformations is the weighted projective space $\mathbb K\mathrm P^4(n-11,n-10,n-9,n-8,n-7)$. For even $n$, the subspace of symplectic Lie algebras is determined by a single linear equation.
@article{TRSPY_2006_252_a16,
     author = {D. V. Millionshchikov},
     title = {Deformations of {Filiform} {Lie} {Algebras} and {Symplectic} {Structures}},
     journal = {Informatics and Automation},
     pages = {194--216},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a16/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Deformations of Filiform Lie Algebras and Symplectic Structures
JO  - Informatics and Automation
PY  - 2006
SP  - 194
EP  - 216
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a16/
LA  - ru
ID  - TRSPY_2006_252_a16
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Deformations of Filiform Lie Algebras and Symplectic Structures
%J Informatics and Automation
%D 2006
%P 194-216
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a16/
%G ru
%F TRSPY_2006_252_a16
D. V. Millionshchikov. Deformations of Filiform Lie Algebras and Symplectic Structures. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 194-216. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a16/

[1] Babenko I.K., Taimanov I.A., “O neformalnykh odnosvyaznykh simplekticheskikh mnogoobraziyakh”, Sib. mat. zhurn., 41:2 (2000), 253–269 | MR | Zbl

[2] Chu B., “Symplectic homogeneous spaces”, Trans. Amer. Math. Soc., 197 (1974), 145–159 | DOI | MR | Zbl

[3] Dixmier J., “Cohomologie des algèbres de Lie nilpotentes”, Acta sci. math. Szeged., 16 (1955), 246–250 | MR | Zbl

[4] Feigin B.L., Fuks D.B., “Gomologii algebry Li vektornykh polei na pryamoi”, Funkts. anal. i ego pril., 14:3 (1980), 45–60 | MR | Zbl

[5] Fialovski A., “Deformatsii algebry Li vektornykh polei na pryamoi”, UMN, 38:1 (1983), 201–202 | MR

[6] Fuks D.B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984

[7] Gómez J.R., Jimenéz-Merchán A., Khakimdjanov Y., “Symplectic structures on the filiform Lie algebras”, J. Pure and Appl. Algebra, 156 (2001), 15–31 | DOI | MR | Zbl

[8] Goze M., Bouyakoub A., “Sur les algèbres de Lie munies d'une forme symplectique”, Rend. Sem. Fac. Sci. Univ. Cagliari., 57:1 (1987), 85–97 | MR | Zbl

[9] Khakimdjanov Yu., Goze M., Medina A., “Symplectic or contact structures on Lie groups”, Diff. Geom. and Appl., 21:1 (2004), 41–54 | DOI | MR | Zbl

[10] Maltsev A.I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. mat., 13:1 (1949), 9–32 | MR | Zbl

[11] Médina A., Revoy P., “Groupes de Lie à structure de symplectique invariante”, Symplectic geometry, groupoids, and integrable systems, Math. Sci. Res. Inst. Publ., 20, Springer, New York; Berlin, 1991, 247–266 | MR

[12] Millionschikov D.V., “Kogomologii nilmnogoobrazii i teorema Goncharovoi”, UMN, 56:4 (2001), 153–154 | MR

[13] Millionschikov D.V., “Cohomology of nilmanifolds and Gontcharova's theorem”, Global differential geometry: the mathematical legacy of Alfred Gray, Contemp. Math., 288, eds. M. Fernandez, J. Wolf, Amer. Math. Soc., Providence (RI), 2001, 381–385 | MR | Zbl

[14] Millionschikov D.V., “$\mathbb N$-graduirovannye filiformnye algebry Li”, UMN, 57:2 (2002), 197–198 | MR

[15] Millionschikov D.V., “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence (RI), 2004, 259–279 | MR | Zbl

[16] Millionschikov D.V., “Deformatsii graduirovannykh algebr Li i simplekticheskie struktury”, UMN, 58:6 (2003), 157–158 | MR

[17] Morozov V.V., “Klassifikatsiya nilpotentnykh algebr Li shestogo poryadka”, Izv. vuzov. Matematika, 1958, no. 4, 161–171 | MR

[18] Nijenhuis A., Richardson R.W., “Deformations of Lie algebra structures”, J. Math. and Mech., 17:1 (1967), 89–105 | MR | Zbl

[19] Vergne M., “Cohomologie des algèbres de Lie nilpotentes”, Bull. Soc. math. France, 98 (1970), 81–116 | MR | Zbl