Faithful Group Actions and Aspherical Complexes
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 184-193

Voir la notice de l'article provenant de la source Math-Net.Ru

For a free group $F$ and normal subgroups $R$ and $S$ of $F$, we study the question of whether the action of the group $F/RS$ on the abelian group $\frac {R\cap S}{[R,S]}$ with respect to conjugation in $F$ is faithful. We find conditions on the subgroups $R$ and $S$ under which this action is faithful and apply this theory to the study of the asphericity of two-dimensional CW-complexes and derived series in groups. One of the applications of the method considered in this paper is a description of obstructions to the asphericity of the so-called LOT presentations in terms of transfinite derived series.
@article{TRSPY_2006_252_a15,
     author = {R. V. Mikhailov},
     title = {Faithful {Group} {Actions} and {Aspherical} {Complexes}},
     journal = {Informatics and Automation},
     pages = {184--193},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/}
}
TY  - JOUR
AU  - R. V. Mikhailov
TI  - Faithful Group Actions and Aspherical Complexes
JO  - Informatics and Automation
PY  - 2006
SP  - 184
EP  - 193
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/
LA  - ru
ID  - TRSPY_2006_252_a15
ER  - 
%0 Journal Article
%A R. V. Mikhailov
%T Faithful Group Actions and Aspherical Complexes
%J Informatics and Automation
%D 2006
%P 184-193
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/
%G ru
%F TRSPY_2006_252_a15
R. V. Mikhailov. Faithful Group Actions and Aspherical Complexes. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 184-193. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/