Faithful Group Actions and Aspherical Complexes
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 184-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a free group $F$ and normal subgroups $R$ and $S$ of $F$, we study the question of whether the action of the group $F/RS$ on the abelian group $\frac {R\cap S}{[R,S]}$ with respect to conjugation in $F$ is faithful. We find conditions on the subgroups $R$ and $S$ under which this action is faithful and apply this theory to the study of the asphericity of two-dimensional CW-complexes and derived series in groups. One of the applications of the method considered in this paper is a description of obstructions to the asphericity of the so-called LOT presentations in terms of transfinite derived series.
@article{TRSPY_2006_252_a15,
     author = {R. V. Mikhailov},
     title = {Faithful {Group} {Actions} and {Aspherical} {Complexes}},
     journal = {Informatics and Automation},
     pages = {184--193},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/}
}
TY  - JOUR
AU  - R. V. Mikhailov
TI  - Faithful Group Actions and Aspherical Complexes
JO  - Informatics and Automation
PY  - 2006
SP  - 184
EP  - 193
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/
LA  - ru
ID  - TRSPY_2006_252_a15
ER  - 
%0 Journal Article
%A R. V. Mikhailov
%T Faithful Group Actions and Aspherical Complexes
%J Informatics and Automation
%D 2006
%P 184-193
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/
%G ru
%F TRSPY_2006_252_a15
R. V. Mikhailov. Faithful Group Actions and Aspherical Complexes. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 184-193. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a15/

[1] Adams J., “A new proof of a theorem of W.H. Cockcroft”, J. London Math. Soc., 30 (1955), 482–488 | DOI | MR | Zbl

[2] Bogley W., “J.H.C. Whitehead's asphericity question”, Two-dimensional homotopy and combinatorial group theory, LMS Lect. Note Ser., 197, Cambridge Univ. Press, Cambridge, 1993, 309–334 | MR | Zbl

[3] Brandenburg J., Dyer M., “On J.H.C. Whitehead's aspherical question. I”, Comment. Math. Helv., 56 (1981), 431–446 | DOI | MR | Zbl

[4] Gruenberg K.W., Relation modules of finite groups, Expository lectures from the CBMS reg. conf. (Univ. Wisconsin-Parkside, 1974), CBMS Reg. Conf. Ser. Math., 25, Amer. Math. Soc., Providence (RI), 1976 | MR | Zbl

[5] Gutierrez M.A., Ratcliffe J., “On the second homotopy group”, Quart. J. Math. Oxford, 32 (1981), 45–55 | DOI | MR | Zbl

[6] Gaschütz W., “Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden”, Math. Ztschr., 60 (1954), 274–286 | DOI | MR | Zbl

[7] Lichtman A.I., “A group theoretical equivalent of the zero divisor problem”, Proc. Amer. Math. Soc., 97 (1986), 212–216 | DOI | MR | Zbl

[8] Mital J.N., Passi I.B.S., “Annihilators of relation modules”, J. Austral. Math. Soc., 16 (1973), 228–233 | DOI | MR | Zbl

[9] Mikhailov R.V., “O nilpotentnoi i razreshimoi approksimiruemosti grupp”, Mat. sb., 196:11 (2005), 109–126 | MR | Zbl

[10] Mikhailov R., “On residual nilpotence of projective crossed modules”, Commun. Algebra, 34:4 (2006), 1451–1458 | DOI | MR | Zbl

[11] Mikhailov R., Passi I.B.S., “Faithfulness of certain modules and residual nilpotence of groups”, Intern. J. Alg. and Comput., 16:3 (2006), 525–539 | DOI | MR | Zbl

[12] Olshanskii A.Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[13] Passi I.B.S., “Annihilators of relation modules. II”, J. Pure and Appl. Algebra, 6 (1975), 235–237 | DOI | MR | Zbl