Cohomology of Open Torus Manifolds
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 158-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an open torus manifold is introduced. A compact open torus manifold is a torus manifold introduced earlier. It is shown that the equivariant cohomology ring of an open torus manifold $M$ is the face ring of a simplicial poset when every face of the orbit space $Q$ is acyclic. This result extends an earlier result by Masuda and Panov, and the proof here is more direct. Reisner's theorem is then applied to our setting, and a necessary and sufficient condition is given for the equivariant cohomology ring of $M$ to be Cohen–Macaulay in terms of the orbit space $Q$.
@article{TRSPY_2006_252_a13,
     author = {M. Masuda},
     title = {Cohomology of {Open} {Torus} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {158--166},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a13/}
}
TY  - JOUR
AU  - M. Masuda
TI  - Cohomology of Open Torus Manifolds
JO  - Informatics and Automation
PY  - 2006
SP  - 158
EP  - 166
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a13/
LA  - en
ID  - TRSPY_2006_252_a13
ER  - 
%0 Journal Article
%A M. Masuda
%T Cohomology of Open Torus Manifolds
%J Informatics and Automation
%D 2006
%P 158-166
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a13/
%G en
%F TRSPY_2006_252_a13
M. Masuda. Cohomology of Open Torus Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 158-166. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a13/

[1] Barthel G., Basselet J.-P., Fieseler K.-H., Kaup L., “Combinatorial intersection cohomology for fans”, Tohoku Math. J., 54 (2002), 1–41 | DOI | MR | Zbl

[2] Bredon G.E., Introduction to compact transformation groups, Acad. Press, New York; London, 1972 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence (RI), 2002 | MR | Zbl

[4] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62 (1991), 417–451 | DOI | MR | Zbl

[5] Franz M., Puppe V., Exact sequences for equivariant formal spaces, arXiv.org: math.AT/0307112

[6] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40 (2003), 1–68 | MR | Zbl

[7] Hsiang W.Y., Cohomology theory of topological transformation groups, Ergeb. Math. und Grenzgeb., 85, Springer, Berlin; Heidelberg; New York, 1975 ; Syan U.I., Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR | Zbl | MR

[8] Maeda H., Masuda M., Panov T., Torus graphs and simplicial posets, arXiv.org: math.AT/0511582 | MR

[9] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J., 51 (1999), 237–265 | DOI | MR | Zbl

[10] Masuda M., Panov T., On the cohomology of torus manifolds, arXiv.org: math.AT/0306100 | MR

[11] Stanley R.P., “$f$-vectors and $h$-vectors of simplicial posets”, J. Pure and Appl. Algebra, 71 (1991), 319–331 | DOI | MR | Zbl

[12] Stanley R.P., Combinatorics and commutative algebra, 2nd ed., Progr. Math., 41, Birkhäuser, Boston, 1996 | MR | Zbl