Hochschild Cohomology and Higher Order Extensions of Associative Algebras
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 150-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $n$th Hochschild cohomology group is described by $(n-2)$-extensions (Theorem 1). When $n=2,3$, the theorem reduces to the well-known classical results; for $n=1$, we get a description of the group of derivations by extensions; and for $n\ge 4$, this gives us a new description of cohomology groups. One can consider this theorem as an alternative definition of cohomology theory. So, one has some kind of hint to define cohomology theory for various algebraic structures.
@article{TRSPY_2006_252_a12,
     author = {R. T. Kurdiani},
     title = {Hochschild {Cohomology} and {Higher} {Order} {Extensions} of {Associative} {Algebras}},
     journal = {Informatics and Automation},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a12/}
}
TY  - JOUR
AU  - R. T. Kurdiani
TI  - Hochschild Cohomology and Higher Order Extensions of Associative Algebras
JO  - Informatics and Automation
PY  - 2006
SP  - 150
EP  - 157
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a12/
LA  - en
ID  - TRSPY_2006_252_a12
ER  - 
%0 Journal Article
%A R. T. Kurdiani
%T Hochschild Cohomology and Higher Order Extensions of Associative Algebras
%J Informatics and Automation
%D 2006
%P 150-157
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a12/
%G en
%F TRSPY_2006_252_a12
R. T. Kurdiani. Hochschild Cohomology and Higher Order Extensions of Associative Algebras. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 150-157. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a12/

[1] Hochschild G., “On the cohomology groups of an associative algebra”, Ann. Math. Ser. 2, 46 (1945), 58–67 | DOI | MR | Zbl

[2] Husemoller D., Moore J.C., Stasheff J., “Differential homological algebra and homogeneous spaces”, J. Pure and Appl. Algebra, 5 (1974), 113–185 | DOI | MR | Zbl

[3] Kurdiani R.T., “Kogomologii Khokhshilda i rasshireniya”, UMN, 60:5 (2005), 169–170 | MR | Zbl

[4] Shukla U., “Cohomologie des algèbres associatives”, Ann. Sci. École Norm. Super. Sér. 3, 78 (1961), 163–209 | MR | Zbl