Some Covering Properties in Topological and Uniform Spaces
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 134-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent progress in selection principles theory is discussed and is illustrated mainly by the Hurewicz covering property and its strong version, the Gerlits–Nagy property $\mathsf{GN}(*)$. Some results that have not been published elsewhere are given with proofs.
@article{TRSPY_2006_252_a11,
     author = {Lj. D. R. Ko\v{c}inac},
     title = {Some {Covering} {Properties} in {Topological} and {Uniform} {Spaces}},
     journal = {Informatics and Automation},
     pages = {134--149},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a11/}
}
TY  - JOUR
AU  - Lj. D. R. Kočinac
TI  - Some Covering Properties in Topological and Uniform Spaces
JO  - Informatics and Automation
PY  - 2006
SP  - 134
EP  - 149
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a11/
LA  - en
ID  - TRSPY_2006_252_a11
ER  - 
%0 Journal Article
%A Lj. D. R. Kočinac
%T Some Covering Properties in Topological and Uniform Spaces
%J Informatics and Automation
%D 2006
%P 134-149
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a11/
%G en
%F TRSPY_2006_252_a11
Lj. D. R. Kočinac. Some Covering Properties in Topological and Uniform Spaces. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 134-149. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a11/