Virtual Knots and Links
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 114-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an introduction to the subject of virtual knot theory and presents a discussion of some new specific theorems about virtual knots. The new results are as follows: Using a 3-dimensional topology approach, we prove that if a connected sum of two virtual knots $K_1$ and $K_2$ is trivial, then so are both $K_1$ and $K_2$. We establish an algorithm for recognizing virtual links that is based on the Haken–Matveev technique.
@article{TRSPY_2006_252_a10,
     author = {L. H. Kaufman and V. O. Manturov},
     title = {Virtual {Knots} and {Links}},
     journal = {Informatics and Automation},
     pages = {114--133},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a10/}
}
TY  - JOUR
AU  - L. H. Kaufman
AU  - V. O. Manturov
TI  - Virtual Knots and Links
JO  - Informatics and Automation
PY  - 2006
SP  - 114
EP  - 133
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a10/
LA  - ru
ID  - TRSPY_2006_252_a10
ER  - 
%0 Journal Article
%A L. H. Kaufman
%A V. O. Manturov
%T Virtual Knots and Links
%J Informatics and Automation
%D 2006
%P 114-133
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a10/
%G ru
%F TRSPY_2006_252_a10
L. H. Kaufman; V. O. Manturov. Virtual Knots and Links. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 114-133. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a10/

[1] Bartholomew A., Fenn R., Quaternionic invariants of virtual knots and links, , 2003 www.maths.sussex.ac.uk/Staff/RAF/Maths/Current/Andy/equivalent.ps

[2] Budden S., Fenn R., “The equation $[B,(A-1)(A,B)]=0$ and virtual knots and links”, Fund. math., 184 (2004), 19–29 | DOI | MR | Zbl

[3] Crowell R.H., Fox R.H., Introduction to knot theory, Ginn Co., New York, 1963 | MR | Zbl

[4] Carter J.S., Saito M., Diagrammatic invariants of knotted curves and surfaces, Unpubl. manuscript, 1992

[5] Carter J.S., Kamada S., Saito M., “Stable equivalence of knots on surfaces and virtual knot cobordisms”, J. Knot Theory and Ramif., 11:3 (2002), 311–322 ; arXiv.org: math.GT/0008118 | DOI | MR | Zbl

[6] Fenn R., Jordan-Santana M., Kauffman L., “Biquandles and virtual links”, Topol. and Appl., 145 (2004), 157–175 | DOI | MR | Zbl

[7] Fenn R., Kauffman L.H., Manturov V.O., “Virtual knot theory—unsolved problems”, Fund. math., 188 (2005), 293–323 | DOI | MR | Zbl

[8] Goussarov M., Polyak M., Viro O., “Finite-type invariants of classical and virtual knots”, Topology, 39 (2000), 1045–1068 | DOI | MR | Zbl

[9] Haken W., “Theorie der Normalflächen”, Acta math., 105 (1961), 245–375 | DOI | MR | Zbl

[10] Hemion G., The classification of knots and 3-dimensional spaces, Oxford Univ. Press, Oxford, 1992 | MR | Zbl

[11] Hass J., Lagarias J., “The number of Reidemeister moves needed for unknotting”, J. Amer. Math. Soc., 14:2 (2001), 399–428 | DOI | MR | Zbl

[12] Hrencecin D., Kauffman L.H., “On filamentations and virtual knots”, Topol. and Appl., 134 (2003), 23–52 | DOI | MR | Zbl

[13] Johannson K., Homotopy equivalences of 3-manifolds with boundaries, Lect. Notes Math., 761, Springer, Berlin, 1979 | MR | Zbl

[14] Joyce D., “A classifying invariant of knots, the knot quandle”, J. Pure and Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR | Zbl

[15] Kadokami T., “Detecting non-triviality of virtual links”, J. Knot Theory and Ramif., 12:6 (2003), 781–803 | DOI | MR | Zbl

[16] Kamada S., Braid presentation of virtual knots and welded knots, arXiv.org: math.GT/0008092 | MR

[17] Kanenobu T., “Forbidden moves unknot a virtual knot”, J. Knot Theory and Ramif., 10:1 (2001), 89–96 | DOI | MR | Zbl

[18] Kauffman L.H., “Virtual knot theory”, Talk at the AMS Spring Eastern Sectional Meeting (Univ. Maryland, College Park (USA), Apr. 1997)

[19] Kauffman L.H., Knots and physics, World Sci., Singapore, 2001 | MR

[20] Kauffman L.H., Lambropoulou S., “Virtual braids”, Fund. math., 184 (2004), 159–186 | DOI | MR | Zbl

[21] Kauffman L.H., Lambropoulou S., “Virtual braids and the $L$-move”, J. Knot Theory Ramifications, 15:6 (2006), 773–811 | DOI | MR | Zbl

[22] Kauffman L.H., “Virtual knot theory”, Eur. J. Comb., 20:7 (1999), 663–690 | DOI | MR | Zbl

[23] Kauffman L.H., “Detecting virtual knots”, Atti Sem. Math. Fis. Univ. Modena, 49, Suppl. (2001), 241–282 | MR | Zbl

[24] Kamada N., Kamada S., “Abstract link diagrams and virtual knots”, J. Knot Theory and Ramif., 9:1 (2000), 93–106 | DOI | MR | Zbl

[25] Dye H.A., Kauffman L.H., “Minimal surface representations of virtual knots and links”, Alg. and Geom. Topology, 5 (2005), 509–535 ; arXiv.org: math.AT/0401035 | DOI | MR | Zbl

[26] Dye H.A., Kauffman L.H., “Virtual knot diagrams and the Witten–Reshetikhin–Turaev invariant”, J. Knot Theory and Ramif., 14:8 (2005), 1045–1075 | DOI | MR | Zbl

[27] Kauffman L.H., “A self-linking invariant of virtual knots”, Fund. math., 184 (2004), 135–158 | DOI | MR | Zbl

[28] Kim S.G., “Virtual knot groups and their peripheral structure”, J. Knot Theory and Ramif., 9:6 (2000), 797–812 ; arXiv.org: math.GT/9907172 | DOI | MR | Zbl

[29] Kauffman L.H., Radford D., “Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links”, Diagrammatic morphisms and applications (San Francisco, 2000), Contemp. Math., 318, Amer. Math. Soc., Providence (RI), 2003, 113–140 | MR | Zbl

[30] Kishino T., Satoh S., “A note on non-classical virtual knots”, J. Knot Theory and Ramif., 13:7 (2004), 845–856 | DOI | MR | Zbl

[31] Jaeger F., Kauffman L.H., Saleur H., “The Conway polynomial in $R^3$ and in thickened surfaces: A new determinant formulation”, J. Comb. Theory B, 61 (1994), 237–259 | DOI | MR | Zbl

[32] Kuperberg G., “What is a virtual link?”, Alg. and Geom. Topology, 3 (2003), 587–591 ; arXiv.org: math.GT/0208039 | DOI | MR | Zbl

[33] Manturov V., Knot theory, Chapman Hall/CRC, Boca Raton (FL), 2004 | MR | Zbl

[34] Manturov V.O., “On invariants of virtual links”, Acta appl. math., 72:3 (2002), 295–309 | DOI | MR | Zbl

[35] Manturov V.O., “Multi-variable polynomial invariants for virtual links”, J. Knot Theory and Ramif., 12:8 (2003), 1131–1144 | DOI | MR | Zbl

[36] Manturov V.O., “Virtual knots and infinite-dimensional Lie algebras”, Acta appl. math., 83:3 (2004), 221–233 | DOI | MR | Zbl

[37] Manturov V.O., “Invarianty virtualnykh zatseplenii”, DAN, 384:1 (2002), 11–13 | MR | Zbl

[38] Manturov V.O., “Krivye na poverkhnostyakh, virtualnye uzly i polinom Dzhonsa–Kaufmana”, DAN, 390:2 (2003), 155–157 | MR | Zbl

[39] Manturov V.O., “Invariantnyi polinom dvukh peremennykh dlya virtualnykh zatseplenii”, UMN, 57:5 (2002), 141–142 | MR | Zbl

[40] Manturov V.O., “Kauffman-like polynomial and curves in 2-surfaces”, J. Knot Theory and Ramif., 12:8 (2003), 1145–1153 | DOI | MR | Zbl

[41] Manturov V.O., “Vassiliev invariants for virtual links, curves on surfaces and the Jones–Kauffman polynomial”, J. Knot Theory and Ramif., 14:2 (2005), 231–242 | DOI | MR | Zbl

[42] Manturov V.O., “Long virtual knots and their invariants”, J. Knot Theory and Ramif., 13:8 (2004), 1029–1039 | DOI | MR | Zbl

[43] Manturov V.O., Teoriya uzlov, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva; Izhevsk, 2005

[44] Manturov V.O., Virtual links are algorithmically recognisable, arXiv.org: math.GT/0408255

[45] Manturov V.O., “O raspoznavanii virtualnykh kos”, Zap. nauch. sem. POMI, 299 (2003), 267–286 | MR

[46] Moise E.E., “Affine structures in 3-manifolds. V: The triangulation theorem and Hauptvermutung”, Ann. Math., 56 (1952), 96–114 | DOI | MR | Zbl

[47] Matveev S.V., “Distributivnye gruppoidy v teorii uzlov”, Mat. sb., 119:1 (1982), 78–88 | MR | Zbl

[48] Matveev S.V., Algorithmic topology and classification of 3-manifolds, Springer, Berlin, 2003 | MR

[49] Nelson S., “Unknotting virtual knots with Gauss diagram forbidden moves”, J. Knot Theory and Ramif., 10:6 (2001), 931–935 | DOI | MR | Zbl

[50] Fenn R., Rimányi R., Rourke C., “The braid-permutation group”, Topology, 36:1 (1997), 123–135 | DOI | MR | Zbl

[51] Satoh S., “Virtual knot presentation of ribbon torus-knots”, J. Knot Theory and Ramif., 9:4 (2000), 531–542 | DOI | MR | Zbl

[52] Sawollek J., On Alexander–Conway polynomials for virtual knots and links, arXiv.org: math.GT/9912173

[53] Sawollek J., “An orientation-sensitive Vassiliev invariant for virtual knots”, J. Knot Theory and Ramif., 12:6 (2003), 767–779 | DOI | MR | Zbl

[54] Silver D.S., Williams S.G., “Alexander groups and virtual links”, J. Knot Theory and Ramif., 10:1 (2001), 151–160 | DOI | MR | Zbl

[55] Thompson A., “Thin position and the recognition problem for $S^3$”, Math. Res. Lett., 1:5 (1994), 613–630 | MR | Zbl

[56] Turaev V., Virtual strings, arXiv.org: math.GT/0310218 | MR

[57] Vershinin V., “On homology of virtual braids and Burau representation”, J. Knot Theory and Ramif., 10:5 (2001), 795–812 | DOI | MR | Zbl