Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2005_251_a12, author = {L. O. Chekhov and A. V. Marshakov and A. D. Mironov and D. Vasiliev}, title = {Complex {Geometry} of {Matrix} {Models}}, journal = {Informatics and Automation}, pages = {265--306}, publisher = {mathdoc}, volume = {251}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/} }
TY - JOUR AU - L. O. Chekhov AU - A. V. Marshakov AU - A. D. Mironov AU - D. Vasiliev TI - Complex Geometry of Matrix Models JO - Informatics and Automation PY - 2005 SP - 265 EP - 306 VL - 251 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/ LA - ru ID - TRSPY_2005_251_a12 ER -
L. O. Chekhov; A. V. Marshakov; A. D. Mironov; D. Vasiliev. Complex Geometry of Matrix Models. Informatics and Automation, Nonlinear dynamics, Tome 251 (2005), pp. 265-306. http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/
[1] Cachazo F., Intriligator K. A., Vafa C., “A large $N$ duality via a geometric transition”, Nucl. Phys. B., 603 (2001), 3–41 ; arXiv: /hep-th/0103067 | DOI | MR | Zbl
[2] Cachazo F., Vafa C., $N=1$ and $N=2$ geometry from fluxes, , 2002 arXiv: /hep-th/0206017
[3] Dijkgraaf R., Vafa C., “Matrix models, topological strings, and supersymmetric gauge theories”, Nucl. Phys. B., 644 (2002), 3–20 ; arXiv: /hep-th/0206255 | DOI | MR | Zbl
[4] Dijkgraaf R., Vafa C., “On geometry and matrix models”, Nucl. Phys. B., 644 (2002), 21–39 ; arXiv: /hep-th/0207106 | DOI | MR | Zbl
[5] Dijkgraaf R., Vafa C., A perturbative window into non-perturbative physics, , 2002 arXiv: /hep-th/0208048
[6] Demeterfi K., Deo N., Jain S., Tan C.-I., “Multiband structure and critical behavior of matrix models”, Phys. Rev. D., 42 (1990), 4105–4122 | DOI
[7] Jurkiewicz J., “Regularization of one-matrix models”, Phys. Lett. B., 245 (1990), 178–184 | DOI | MR | Zbl
[8] Crnković C., Moore G., “Multicritical multi-cut matrix models”, Phys. Lett. B., 257 (1991), 322–328 | DOI | MR
[9] Ambjørn J., Akemann G., “New universal spectral correlators”, J. Phys. A: Math. and Gen., 29 (1996), L555–L560 ; arXiv: cond-mat/9606129 | DOI | MR | Zbl
[10] Bonnet G., David F., Eynard B., “Breakdown of universality in multi-cut matrix models”, J. Phys. A.: Math. and Gen., 33 (2000), 6739–6768 ; arXiv: cond-mat/0003324 | DOI | MR | Zbl
[11] Seiberg N., Witten E., “Electric–magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B., 426 (1994), 19–52 ; arXiv: /hep-th/9407087 | DOI | MR | Zbl
[12] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B., 431 (1994), 484–550 ; arXiv: /hep-th/9408099 | DOI | MR | Zbl
[13] Krichever I. M., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Commun. Pure and Appl. Math., 47:4 (1992), 437–475 ; arXiv: /hep-th/9205110 | DOI | MR
[14] Gorsky A., Marshakov A., Mironov A., Morozov A., “RG equations from Whitham hierarchy”, Nucl. Phys. B., 527 (1998), 690–716 ; arXiv: /hep-th/9802007 | DOI | MR | Zbl
[15] Marshakov A., Mironov A., Seiberg–Witten systems and Whitham hierarchies: A short review, , 1998 arXiv: /hep-th/9809196
[16] Marshakov A., Seiberg–Witten theory and integrable systems, World Sci., Singapore, 1999, 253 pp. | MR | Zbl
[17] H. W. Braden, I. M. Krichever (eds.), Integrability: The Seiberg–Witten and Whitham equations, Gordon and Breach Sci. Publ., Amsterdam, 2000, ix+276 pp. | MR | Zbl
[18] Gorsky A., Mironov A., “Integrable many-body systems and gauge theories”, Integrable hierarchies and modern physical theories:, Proc. NATO advanced research Workshop (Chicago, July 22–26, 2000), NATO Sci. Ser. 2: Math. Phys. Chem., 18, eds. H. Aratyn et al., Kluwer, Dordrecht, 2001, 33–176 ; arXiv: /hep-th/0011197 | MR | Zbl
[19] Chekhov L., Mironov A., “Matrix models vs. Seiberg–Witten/Whitham theories”, Phys. Lett. B., 552 (2003), 293–302 ; arXiv: /hep-th/0209085 | DOI | MR | Zbl
[20] Kazakov V. A., Marshakov A., “Complex curve of the two-matrix model and its tau-function”, J. Phys. A.: Math. and Gen., 36 (2003), 3107–3136 ; arXiv: /hep-th/0211236 | DOI | MR | Zbl
[21] Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A., “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B., 357 (1991), 565–618 | DOI | MR
[22] Kharchev S., Marshakov A., Mironov A., Orlov A., Zabrodin A., “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nucl. Phys. B., 366 (1991), 569–601 | DOI | MR
[23] Marshakov A., “Integrable structures in matrix models and physics of 2D gravity”, Intern. J. Mod. Phys. A., 8 (1993), 3831–3882 ; arXiv: /hep-th/9303101 | DOI | MR | Zbl
[24] Mironov A., “2D gravity and matrix models. I: 2D gravity”, Intern. J. Mod. Phys. A., 9 (1994), 4355–4406 ; arXiv: /hep-th/9312212 | DOI | MR
[25] Mironov A. D., “Matrichnye modeli dvumernoi gravitatsii”, EChAYa, 33 (2002), 1051–1145
[26] Morozov A. Yu., “Integriruemost i matrichnye modeli”, UFN, 164:1 (1994), 3–62 ; arXiv: /hep-th/9303139 | DOI
[27] Morozov A., Matrix models as integrable systems, , 1995 arXiv: /hep-th/9502091 | MR
[28] Migdal A. A., “Loop equations and $1/N$ expansion”, Phys. Rept., 102 (1983), 199–290 | DOI
[29] Ambjørn J., Jurkiewicz J., Makeenko Yu. M., “Multiloop correlators for two-dimensional quantum gravity”, Phys. Lett. B., 251 (1990), 517–524 | DOI | MR
[30] Makeenko Yu., “Loop equations in matrix models and in 2D quantum gravity”, Mod. Phys. Lett. A., 6 (1991), 1901–1913 | DOI | MR | Zbl
[31] David F., “Loop equations and nonperturbative effects in two-dimensional quantum gravity”, Mod. Phys. Lett. A., 5 (1990), 1019–1030 | DOI | MR
[32] Mironov A., Morozov A., “On the origin of Virasoro constraints in matrix models: Lagrangian approach”, Phys. Lett. B., 252 (1990), 47–52 | DOI | MR
[33] Ambjørn J., Makeenko Yu. M., “Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity”, Mod. Phys. Lett. A., 5 (1990), 1753–1763 | DOI | MR | Zbl
[34] Itoyama H., Matsuo Y., “Noncritical Virasoro algebra of $D1$ matrix model and quantized string field”, Phys. Lett. B., 255 (1991), 202–208 | DOI | MR
[35] Alexandrov A., Mironov A., Morozov A., “Partition functions of matrix models: first special functions of string theory”, Intern. J. Mod. Phys. A., 19 (2004), 4127–4165 ; arXiv: /hep-th/0310113 | DOI | MR
[36] Alexandrov A., Mironov A., Morozov A., Unified description of correlators in non-Gaussian phases of Hermitean matrix model, , 2004 arXiv: /hep-th/0412099
[37] Alexandrov A., Mironov A., Morozov A., “Solving Virasoro constraints in matrix models”, Fortschr. Phys., 53 (2005), 512–521 ; arXiv: /hep-th/0412205 | DOI | MR | Zbl
[38] Klemm A., Marino M., Theisen S., “Gravitational corrections in supersymmetric gauge theory and matrix models”, J. High Energy Phys., 2003, no. 03, Pap. 051 ; arXiv: /hep-th/0211216 | MR
[39] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B., 340 (1990), 281–332 | DOI | MR
[40] Dijkgraaf R., Verlinde H. L., Verlinde E. P., “Topological strings in $d1$”, Nucl. Phys. B., 352 (1991), 59–86 | DOI | MR
[41] Marshakov A., Mironov A., Morozov A., “WDVV-like equations in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B., 389 (1996), 43–52 ; arXiv: /hep-th/9607109 | DOI | MR
[42] Marshakov A., Mironov A., Morozov A., “WDVV equations from algebra of forms”, Mod. Phys. Lett. A., 12 (1997), 773–788 ; arXiv: /hep-th/9701014 | DOI | MR
[43] Marshakov A., Mironov A., Morozov A., “More evidence for the WDVV equations in $N=2$ SUSY Yang–Mills theories”, Intern. J. Mod. Phys. A., 15 (2000), 1157–1206 ; arXiv: /hep-th/9701123 | MR | Zbl
[44] Mironov A., “WDVV equations and Seiberg–Witten theory”, Integrability: The Seiberg–Witten and Whitham equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach Sci. Publ., Amsterdam, 2000, 103–123 ; arXiv: /hep-th/9903088 | MR | Zbl
[45] Marshakov A., Associativity equations in effective SUSY quantum field theories, , 2001 arXiv: /hep-th/0108023
[46] Marshakov A. V., “Ob uravneniyakh assotsiativnosti”, TMF, 132:1 (2002), 3–49 ; arXiv: /hep-th/0201267 | MR | Zbl
[47] Chekhov L., Marshakov A., Mironov A., Vasiliev D., “DV and WDVV”, Phys. Lett. B., 562 (2003), 323–338 ; arXiv: /hep-th/0301071 | DOI | MR | Zbl
[48] Eynard B., “Topological expansion for the 1-hermitian matrix model correlation functions”, J. High Energy Phys., 2004, no. 11, Pap. 031 ; arXiv: /hep-th/0407261 | MR | Zbl
[49] Mironov A., Morozov A., Semenoff G. W., “Unitary matrix integrals in the framework of generalized Kontsevich model”, Intern. J. Mod. Phys. A., 11 (1996), 5031–5080 ; arXiv: /hep-th/9404005 | DOI | MR | Zbl
[50] Akemann G., “Higher genus correlators for the Hermitian matrix model with multiple cuts”, Nucl. Phys. B., 482 (1996), 403–430 ; arXiv: /hep-th/9606004 | DOI | MR | Zbl
[51] Ambjørn J., Chekhov L., Kristjansen C. F., Makeenko Yu., “Matrix model calculations beyond the spherical limit”, Nucl. Phys. B., 404 (1993), 127–172 ; arXiv: /hep-th/9302014 | DOI | MR
[52] Mehta M. L., Random matrices, 3rd ed., Pure and Appl. Math., 142, Elsevier, Amsterdam, 2004, xviii+688 pp. | MR | Zbl
[53] de Vit B., Marshakov A. V., “Elektromagnitnaya dualnost i uravneniya Vittena–Diikgraafa–Verlinde–Verlinde”, TMF, 129:2 (2001), 230–238 ; arXiv: /hep-th/0105289 | MR
[54] Braden H. W., Marshakov A., “Singular phases of Seiberg–Witten integrable systems: Weak and strong coupling”, Nucl. Phys. B., 595 (2001), 417–466 ; arXiv: /hep-th/0009060 | DOI | MR | Zbl
[55] Gorsky A., Krichever I., Marshakov A., Mironov A., Morozov A., “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B., 355 (1995), 466–474 ; arXiv: /hep-th/9505035 | DOI | MR | Zbl
[56] Itoyama H., Morozov A., “Integrability and Seiberg–Witten theory: Curves and periods”, Nucl. Phys. B., 477 (1996), 855–877 ; arXiv: /hep-th/9511126 | DOI | MR | Zbl
[57] Losev A., Nekrasov N., Shatashvili S. L., “Issues in topological gauge theory”, Nucl. Phys. B., 534 (1998), 549–611 ; arXiv: /hep-th/9711108 | DOI | MR | Zbl
[58] Chekhov L., Makeenko Yu., “The multicritical Kontsevich–Penner model”, Mod. Phys. Lett. A., 7 (1992), 1223–1236 ; arXiv: /hep-th/9201033 | DOI | MR | Zbl
[59] Fay J. D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, Heidelberg, New York, 1973, 137 pp. | MR | Zbl
[60] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B., 241 (1984), 333–380 | DOI | MR | Zbl
[61] Knizhnik V. G., “Analytic fields on Riemannian surfaces”, Phys. Lett. B., 180 (1986), 247–254 | DOI | MR | Zbl
[62] Knizhnik V. G., “Analytic fields on Riemann surfaces, 2”, Commun. Math. Phys., 112 (1987), 567–590 | DOI | MR | Zbl
[63] Knizhnik V. G., “Mnogopetlevye amplitudy v teorii kvantovykh strun i kompleksnaya geometriya”, UFN, 159 (1989), 401–453 | MR
[64] Lebedev D., Morozov A., “Statistical sums of strings on hyperelliptic surfaces”, Nucl. Phys. B., 302 (1988), 163–188 | DOI | MR
[65] Morozov A., “Two-loop statsum of superstring”, Nucl. Phys. B., 303 (1988), 343–372 | DOI | MR
[66] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[67] Kazakov V. A., Marshakov A., Minahan J. A., Zarembo K., “Classical/quantum integrability in AdS/CFT”, J. High Energy Phys., 2004, no. 5, 024, 55 pp. (electronic) ; arXiv: /hep-th/0402207 | MR
[68] Marshakov A. V., “Kvaziklassicheskaya geometriya i integriruemost AdS/KTP sootvetstviya”, TMF, 142:2 (2005), 265–283 ; arXiv: /hep-th/0406056 | MR | Zbl
[69] Hoevenaars L. K., Kersten P. H. M., Martini R., “Generalized WDVV equations for $F(4)$ pure $N=2$ super-Yang–Mills theory”, Phys. Lett. B., 503 (2001), 189–196 ; arXiv: /hep-th/0012133 | DOI | MR | Zbl
[70] Hoevenaars L. K., Martini R., “Generalized WDVV equations for $B(r)$ and $C(r)$ pure $N=2$ super-Yang–Mills theory”, Lett. Math. Phys., 57 (2001), 175–183 ; arXiv: /hep-th/0102190 | DOI | MR | Zbl
[71] Boyarsky A., Marshakov A., Ruchayskiy O., Wiegmann P., Zabrodin A., “On associativity equations in dispersionless integrable hierarchies”, Phys. Lett. B., 515 (2001), 483–492 ; arXiv: /hep-th/0105260 | DOI | MR | Zbl
[72] Kostov I. K., Conformal field theory techniques in random matrix models, , 1999 arXiv: /hep-th/9907060
[73] Dijkgraaf R., Sinkovics A., Temurhan M., “Matrix models and gravitational corrections”, Adv. Theor. and Math. Phys., 7 (2004), 1155–1176 ; arXiv: /hep-th/0211241 | MR
[74] Zamolodchikov A. B., “Conformal scalar field on the hyperelliptic curve and critical Ashkin–Teller multipoint correlation functions”, Nucl. Phys. B., 285 (1987), 481–503 | DOI | MR
[75] Moore G. W., “Matrix models of 2D gravity and isomonodromic deformation”, Progr. Theor. Phys. Suppl., 1990, no. 102, 255–286 | DOI | MR
[76] Chekhov L. O., “Popravki roda odin k mnogorazreznym resheniyam matrichnoi modeli”, TMF, 141:3 (2004), 358–374 ; arXiv: /hep-th/0401089 | MR
[77] Dijkgraaf R., Witten E., “Mean field theory, topological field theory, and multi-matrix models”, Nucl. Phys. B., 342 (1990), 486–522 | DOI | MR
[78] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surv. Diff. Geom., 1 (1991), 243–310 | MR
[79] David F., “Nonperturbative effects in matrix models and vacua of two-dimensional gravity”, Phys. Lett. B., 302 (1993), 403–410 ; arXiv: /hep-th/9212106 | DOI | MR
[80] Lechtenfeld O., “On eigenvalue tunneling in matrix models”, Intern. J. Mod. Phys. A., 7 (1992), 2335–2354 | DOI | MR | Zbl
[81] Kharchev S., Marshakov A., Mironov A., Morozov A., “Generalized Kontsevich model versus Toda hierarchy and discrete matrix models”, Nucl. Phys. B., 397 (1993), 339–378 ; arXiv: /hep-th/9203043 | DOI | MR
[82] Barnes E. W., “The theory of the double gamma function”, Philos. Trans. Roy. Soc. A., 196 (1901), 265–387 | DOI | Zbl
[83] Whittaker E. T., Watson G. N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR
[84] Jimbo M., Miwa T., “QKZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A.: Math. and Gen., 29 (1996), 2923–2958 ; arXiv: /hep-th/9601135 | DOI | MR | Zbl
[85] Chekhov L., Eynard B., Hermitean matrix model free energy: Feynman graph technique for all genera, , 2005 arXiv: /hep-th/0504116 | MR
[86] Vasiliev D., “Determinant formulas for matrix model free energy”, Pisma v ZhETF, 82:3 (2005), 115–118 ; arXiv: /hep-th/0506155 | MR