Complex Geometry of Matrix Models
Informatics and Automation, Nonlinear dynamics, Tome 251 (2005), pp. 265-306

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains some new results and a review of recent achievements concerning multisupport solutions to matrix models. In the leading order of the 't Hooft expansion for matrix integral, these solutions are described by semiclassical, or generalized Whitham, hierarchies and are directly related to the superpotentials of four-dimensional ${\mathcal N}=1$ SUSY gauge theories. We study the derivatives of tau-functions for these solutions associated with families of Riemann surfaces (with possible double points) and find that they satisfy the Witten–Dijkgraaf–Verlinde–Verlinde equations. We also find the free energy in the subleading order in the matrix size and prove that it satisfies certain determinant relations.
@article{TRSPY_2005_251_a12,
     author = {L. O. Chekhov and A. V. Marshakov and A. D. Mironov and D. Vasiliev},
     title = {Complex {Geometry} of {Matrix} {Models}},
     journal = {Informatics and Automation},
     pages = {265--306},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/}
}
TY  - JOUR
AU  - L. O. Chekhov
AU  - A. V. Marshakov
AU  - A. D. Mironov
AU  - D. Vasiliev
TI  - Complex Geometry of Matrix Models
JO  - Informatics and Automation
PY  - 2005
SP  - 265
EP  - 306
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/
LA  - ru
ID  - TRSPY_2005_251_a12
ER  - 
%0 Journal Article
%A L. O. Chekhov
%A A. V. Marshakov
%A A. D. Mironov
%A D. Vasiliev
%T Complex Geometry of Matrix Models
%J Informatics and Automation
%D 2005
%P 265-306
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/
%G ru
%F TRSPY_2005_251_a12
L. O. Chekhov; A. V. Marshakov; A. D. Mironov; D. Vasiliev. Complex Geometry of Matrix Models. Informatics and Automation, Nonlinear dynamics, Tome 251 (2005), pp. 265-306. http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a12/