The Bogolyubov Functional Integral
Informatics and Automation, Nonlinear dynamics, Tome 251 (2005), pp. 223-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of integration with respect to a special Gaussian measure (the Bogolyubov measure) that arises in the statistical equilibrium theory for quantum systems are considered. It is shown that the Gibbs equilibrium means of Bose operators can be represented as functional integrals with respect to this measure. Certain functional integrals with respect to the Bogolyubov measure are calculated. Approximate formulas are constructed that are exact for functional polynomials of a given degree, as well as formulas that are exact for integrable functionals of a wider class. The nondifferentiability of Bogolyubov trajectories in the corresponding function space is established. A theorem on the quadratic variation of trajectories is proved. The properties of scale transformations that follow from this theorem are studied. Examples of semigroups associated with the Bogolyubov measure are constructed. Independent increments for this measure are found. A relation between the Bogolyubov measure and parabolic partial differential equations is considered. An inequality for traces is proved, and an upper estimate is obtained for the Gibbs equilibrium mean of the square of the coordinate operator in the case of a one-dimensional nonlinear oscillator with a positive symmetric interaction.
@article{TRSPY_2005_251_a10,
     author = {D. P. Sankovich},
     title = {The {Bogolyubov} {Functional} {Integral}},
     journal = {Informatics and Automation},
     pages = {223--256},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a10/}
}
TY  - JOUR
AU  - D. P. Sankovich
TI  - The Bogolyubov Functional Integral
JO  - Informatics and Automation
PY  - 2005
SP  - 223
EP  - 256
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a10/
LA  - ru
ID  - TRSPY_2005_251_a10
ER  - 
%0 Journal Article
%A D. P. Sankovich
%T The Bogolyubov Functional Integral
%J Informatics and Automation
%D 2005
%P 223-256
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a10/
%G ru
%F TRSPY_2005_251_a10
D. P. Sankovich. The Bogolyubov Functional Integral. Informatics and Automation, Nonlinear dynamics, Tome 251 (2005), pp. 223-256. http://geodesic.mathdoc.fr/item/TRSPY_2005_251_a10/

[1] Fréchet M., “Sur l'intégrale d'une fonctionnelle étendue à un ensemble abstrait”, Bull. Soc. Math. France., 43 (1915), 249–267 | MR

[2] Daniell P. J., “A general form of integral”, Ann. Math., 19 (1917–1918), 279–294 | DOI | MR | Zbl

[3] Daniell P. J., “Integrals in an infinite number of dimensions”, Ann. Math., 20 (1918–1919), 281–288 | DOI | MR | Zbl

[4] Lyumis L., Vvedenie v abstraktnyi garmonicheskii analiz, IL, M., 1956

[5] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[6] Wiener N., “The mean of a functional of arbitrary elements”, Ann. Math., 22 (1920), 66–72 | DOI | MR | Zbl

[7] Feynman R., “Space–time approach to nonrelativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | DOI | MR

[8] Cameron R., “The Ilstow and Feynman integrals”, J. Anal. Math., 10 (1962/63), 287–361 | DOI | MR

[9] Edwards S. F., Peierls R. E., “Field equations in functional form”, Proc. Roy. Soc. London A., 224 (1954), 24–33 | DOI | MR | Zbl

[10] Gelfand I. M., Minlos R. A., “Reshenie uravnenii kvantovannykh polei”, DAN SSSR, 97 (1954), 209–212 | MR

[11] Fradkin E. S., “Funktsiya Grina dlya vzaimodeistviya nuklonov s mezonami”, DAN SSSR, 98 (1954), 47–50 | MR | Zbl

[12] Bogolyubov N. N., “O predstavlenii funktsii Grina–Shvingera pri pomoschi funktsionalnykh integralov”, DAN SSSR, 99 (1954), 225–226 | MR | Zbl

[13] Bogolyubov N. N., Bogolyubov N. N. (ml.), Aspekty teorii polyarona, Soobsch. OIYaI. No R17-81-65, OIYaI, Dubna, 1981

[14] Sankovich D. P., “Gaussovy funktsionalnye integraly i gibbsovskie ravnovesnye srednie”, TMF, 119 (1999), 345–352 | MR | Zbl

[15] Dyson F. J., “The radiation theories of Tomonaga, Schwinger, and Feynman”, Phys. Rev., 75 (1949), 486–502 | DOI | MR | Zbl

[16] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[17] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[18] Kato T., “Integration of the equation of evolution in a Banach space”, J. Math. Soc. Japan., 5 (1953), 208–234 | DOI | MR | Zbl

[19] Burbaki N., Integrirovanie, Gl. 3–5, 9, Nauka, M., 1977

[20] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[21] Kuelbs J., “Gaussian measures on a Banach space”, J. Funct. Anal., 5 (1970), 354–367 | DOI | MR | Zbl

[22] Rajput B. S., “On Gaussian measures in certain locally convex spaces”, J. Multivar. Anal., 2 (1972), 282–306 | DOI | MR | Zbl

[23] Gross L., “Abstract Wiener spaces”, Proc. 5th Berkeley Symp. Math. Statist. and Probab., v. 2 (1965/66), Univ. California, Berkeley, 1967, 31–42 | MR | Zbl

[24] Yanovich L. A., Priblizhennoe vychislenie kontinualnykh integralov po gaussovym meram, Nauka i tekhnika, Minsk, 1976 | MR

[25] Kac M., “On some connections between probability theory and differential and integral equations”, Proc. 2nd Berkeley Symp. Math. Statist. and Probab. (1950), Univ. California, Berkeley, 1951, 189–215 | MR

[26] Sankovich D. P., “O nekotorykh svoistvakh funktsionalnykh integralov po mere Bogolyubova”, TMF, 126 (2001), 149–163 | MR

[27] Sankovich D. P., “Metricheskie svoistva bogolyubovskikh traektorii v teorii statisticheskogo ravnovesiya”, TMF, 127 (2001), 125–142 | MR | Zbl

[28] Johnson G. W., Lapidus M. L., The Feynman integral and Feynman's operational calculus, Clarendon Press, Oxford, 2000 | MR | Zbl

[29] Royden H. L., Real analysis, 3rd ed., Macmillan, New York, 1988 | MR | Zbl

[30] Lévy P., “Le mouvement brownien plan”, Amer. J. Math., 62 (1940), 487–550 | DOI | MR | Zbl

[31] Cameron R. H., Martin W. T., “The behavior of measure and measurability under change of scale in Wiener space”, Bull. Amer. Math. Soc., 53 (1947), 130–137 | DOI | MR | Zbl

[32] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[33] Khille E., Filips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[34] Davies E. B., One-parameter semigroups, Acad. Press, London, 1980 | MR | Zbl

[35] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997 | MR

[36] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[37] Falk H., Bruch L. W., “Susceptibility and fluctuation”, Phys. Rev., 180 (1969), 442–444 | DOI

[38] Fröhlich J., “The pure phases (harmonic functions) of generalized processes or: Mathematical physics of phase transitions and symmetry breaking”, Bull. Amer. Math. Soc., 84 (1978), 165–193 | DOI | MR | Zbl

[39] Sankovich D. P., “Gaussova dominantnost i fazovye perekhody v sistemakh s nepreryvnoi simmetriei”, TMF, 79 (1989), 460–471 | MR

[40] Bogolyubov N. N., Jr., Sankovich D. P., “Gaussian domination: quantum nonlinear oscillator”, Phys. Lett. A., 137 (1989), 179–182 | DOI | MR