Capture into Resonance and Scattering on Resonances in Two-Frequency Systems
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 198-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Small perturbations imposed on an integrable system cause a slow evolution. During this evolution, the system may pass through a resonance state. In the paper, asymptotic formulas that describe associated phenomena, such as capture into a resonance and scattering by a resonance, are presented.
@article{TRSPY_2005_250_a9,
     author = {A. I. Neishtadt},
     title = {Capture into {Resonance} and {Scattering} on {Resonances} in {Two-Frequency} {Systems}},
     journal = {Informatics and Automation},
     pages = {198--218},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a9/}
}
TY  - JOUR
AU  - A. I. Neishtadt
TI  - Capture into Resonance and Scattering on Resonances in Two-Frequency Systems
JO  - Informatics and Automation
PY  - 2005
SP  - 198
EP  - 218
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a9/
LA  - ru
ID  - TRSPY_2005_250_a9
ER  - 
%0 Journal Article
%A A. I. Neishtadt
%T Capture into Resonance and Scattering on Resonances in Two-Frequency Systems
%J Informatics and Automation
%D 2005
%P 198-218
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a9/
%G ru
%F TRSPY_2005_250_a9
A. I. Neishtadt. Capture into Resonance and Scattering on Resonances in Two-Frequency Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 198-218. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a9/

[1] Anosov D. V., “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystro koleblyuschimisya resheniyami”, Izv. AN SSSR. Ser. mat., 24:5 (1960), 721–742 | MR | Zbl

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR

[3] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR

[4] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR

[5] Arnold V. I., “Usloviya primenimosti i otsenka pogreshnosti metoda usredneniya dlya sistem, kotorye v protsesse evolyutsii prokhodyat cherez rezonansy”, DAN SSSR, 161:1 (1965), 9–12 | MR

[6] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., Editorial URSS, M., 2002, 416 pp. | Zbl

[7] Bakhtin V. I., “Ob usrednenii v mnogochastotnykh sistemakh”, Funkts. analiz i ego pril., 20:2 (1986), 1–7 | MR | Zbl

[8] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, 4-e izd., Nauka, M., 1974, 504 pp. | MR | Zbl

[9] Lifshits I. M., Slutskin A. A., Nabutovskii V. M., “O yavlenii rasseyaniya zaryazhennykh kvazichastits na osobykh tochkakh v $p$-prostranstve”, DAN SSSR, 137:3 (1961), 553–556

[10] Melnikov V. K., “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. Mosk. mat. o-va, 12, 1963, 3–52 | MR

[11] Morozov A. D., “O polnom kachestvennom issledovanii uravneniya Dyuffinga”, Dif. uravneniya, 12:2 (1976), 241–255 | MR | Zbl

[12] Neishtadt A. I., “O prokhozhdenii cherez rezonansy v dvukhchastotnoi zadache”, DAN SSSR, 221:2 (1975), 301–304 | MR | Zbl

[13] Neishtadt A. I., O nekotorykh rezonansnykh zadachakh v nelineinykh sistemakh, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1975

[14] Neishtadt A. I., “Prokhozhdenie cherez separatrisu v rezonansnoi zadache s medlenno izmenyayuschimsya parametrom”, PMM, 39:4 (1975), 621–632 | MR

[15] Neishtadt A. I., “Ob osrednenii v mnogochastotnykh sistemakh, II”, DAN SSSR, 226:6 (1976), 1295–1298 | MR | Zbl

[16] Neishtadt A. I., “O veroyatnostnykh yavleniyakh v vozmuschennykh sistemakh”, Matematika i modelirovanie, NTsBI AN SSSR, Puschino, 1990, 141–155 | MR

[17] Operchuk I. M., Issledovanie statisticheskikh svoistv mnogokratnykh prokhozhdenii cherez rezonans, Dipl. rabota, MGU, M., 2003

[18] Pronchatov V. E., “Ob otsenke pogreshnosti metoda usredneniya v dvukhchastotnoi zadache”, Mat. sb., 134(176):1(9) (1987), 28–41 | MR | Zbl

[19] Treschev D. V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Fazis, M., 1998, 181 pp. | MR

[20] Trifonov S. I., “Analiticheskie diffeomorfizmy kak preobrazovaniya monodromii analiticheskikh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Matematika, mekhanika, 1986, no. 5, 70–72 | MR | Zbl

[21] Chirikov B. V., “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, DAN SSSR, 125:5 (1959), 1015–1018 | MR | Zbl

[22] Cartwright J. H. E., Feingold M., Piro O., “Global diffusion in a realistic three-dimensional time-dependent nonturbulent fluid flow”, Phys. Rev. Lett., 75:20 (1995), 3669–3672 | DOI

[23] Dirac P. A. M., “The adiabatic invariance of the quantum integrals”, Proc. Roy. Soc. London A., 107 (1925), 725–734 | DOI | MR | Zbl

[24] Dolgopyat D., Repulsion from resonances, Preprint, Univ. Maryland, 2004 | Zbl

[25] Douady R., Aplications du théoréme de tores invariantes, Thesis, Univ. Paris VII, 1982

[26] Goldreich P., Peale S., “Spin-orbit coupling in the Solar System”, Astron. J., 71:6 (1966), 425–438 | DOI

[27] Itin A. P., Neishtadt A. I., Vasiliev A. A., “Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave”, Physica D., 141:3–4 (2000), 281–296 | DOI | MR | Zbl

[28] Kasuga T., “On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics, I, II, III”, Proc. Japan Acad., 37:7 (1961), 366–382 | DOI | MR | Zbl

[29] Kevorkian J., “On a model for reentry roll resonance”, SIAM J. Appl. Math., 26:3 (1974), 638–669 | DOI | Zbl

[30] Kuksin S., “On the inclusion of an almost integrable analytic symplectomorphism into a Hamiltonian flow”, Russ. J. Math. Phys., 1:2 (1993), 191–207 | MR | Zbl

[31] Kuksin S., Pöschel J., “On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications”, Seminar on dynamical systems (Euler Intern. Math. Inst., St. Petersburg, 1991.), Progr. Nonlin. Diff. Equat. and Appl., 12, Birkhäuser, Basel, Boston, Stuttgart, 1994, 96–116 | MR | Zbl

[32] Mezic I., “Break-up of invariant surfaces in action–angle–angle maps and flows”, Physica D., 154:1–2 (2001), 51–67 | DOI | MR | Zbl

[33] Moltchanov A. M., “The resonant structure of the Solar System”, Icarus, 8:2 (1968), 203–215 | DOI

[34] Murdock J., “Qualitative theory of nonlinear resonance by averaging and dynamical systems methods”, Dynamics Rep., 1 (1988), 91–172 | MR | Zbl

[35] Neishtadt A. I., “Averaging, capture into resonances and chaos in nonlinear systems”, Chaos/Xaoc: Soviet–American perspectives on nonlinear science, ed. D. Campbell, Amer. Inst. Phys., New York, 1990, 261–273 | MR

[36] Neishtadt A. I., “On destruction of adiabatic invariants in multi-frequency systems”, EQUADIFF 91, Proc. Intern. Conf. on differential equations (Barselona, 1991), 1, ed. C. Perelló, C. Simó, J. Solà-Morales, World Sci., Singapore, 1993, 195–207 | MR | Zbl

[37] Neishtadt A. I., “On adiabatic invariance in two-frequency systems”, Hamiltonian systems with three or more degrees of freedom, Proc. NATO Adv. Study Inst., NATO ASI. Ser. Math. Phys. Sci., 533, ed. C. Simó, Kluwer, Dordrecht, 1999, 193–213 | MR

[38] Neishtadt A. I., “Scattering by resonances”, Celest. Mech. and Dyn. Astron., 65:1 (1997), 1–20 | DOI | MR | Zbl

[39] Piro O., Feingold A. I., “Diffusion in three-dimensional Liouvillian maps”, Phys. Rev. Lett., 61:16 (1988), 1799–1802 | DOI | MR

[40] Pronin A., Treschev D., “On the inclusion of analytic maps into analytic flows”, Reg. i khaot. dinamika, 2:2 (1997), 14–24 | MR | Zbl