The Space of Weighted Bessel Potentials
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 192-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fractional weighted integro-differentiation operator is considered. The kernel of this operator is determined by applying the Fourier–Bessel integral transform. The space of weighted Bessel potentials is described on the basis of the Stein–Lizorkin approach; the description uses B-hypersingular integrals and weighted Riesz potentials that were introduced earlier by one of the authors.
@article{TRSPY_2005_250_a8,
     author = {L. N. Lyakhov and M. V. Polovinkina},
     title = {The {Space} of {Weighted} {Bessel} {Potentials}},
     journal = {Informatics and Automation},
     pages = {192--197},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a8/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - M. V. Polovinkina
TI  - The Space of Weighted Bessel Potentials
JO  - Informatics and Automation
PY  - 2005
SP  - 192
EP  - 197
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a8/
LA  - ru
ID  - TRSPY_2005_250_a8
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A M. V. Polovinkina
%T The Space of Weighted Bessel Potentials
%J Informatics and Automation
%D 2005
%P 192-197
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a8/
%G ru
%F TRSPY_2005_250_a8
L. N. Lyakhov; M. V. Polovinkina. The Space of Weighted Bessel Potentials. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 192-197. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a8/

[1] Kipriyanov I. A., “Preobrazovanie Fure–Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. MIAN, 89, 1967, 130–213 | Zbl

[2] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997, 199 pp. | MR

[3] Stein E. M., “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR

[4] Lizorkin P. I., “Opisanie prostranstva $L_p^r(R_n)$ v terminakh raznostnykh singulyarnykh integralov”, Mat. sb., 81:1 (1970), 79–91 | MR | Zbl

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 455 pp. | MR

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[7] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[8] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, UMN, 6:2 (1951), 102–143 | MR | Zbl

[9] Lyakhov L. N., “Ob odnom klasse gipersingulyarnykh integralov”, DAN SSSR, 315:2 (1990), 291–296 | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1965, 1100 pp.

[11] Levitan B. M., “Normirovannye koltsa, porozhdennye operatorom obobschennogo sdviga”, DAN SSSR, 47:1 (1945), 3–6 | MR

[12] Lyakhov L. N., “Vesovye normirovannye koltsa i tauberova teorema approksimatsii, porozhdennye obobschennym sdvigom”, DAN, 380:5 (2001), 588–590 | MR | Zbl

[13] Lyakhov L. N., “Opisanie prostranstva $B$-potentsialov Rissa $\mathbf{U}_\alpha^\gamma(L_p^\gamma)$ s pomoschyu $B$-proizvodnykh poryadka $2[\alpha/2]$”, DAN, 341:2 (1995), 161–165 | MR | Zbl