Positive Solutions to Weakly Nonlinear Elliptic Equations of Second Order on Cylindrical Domains
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 183-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions to second-order semilinear elliptic equations in cylindrical domains are studied. Conditions for the existence and nonexistence of positive solutions satisfying the zero Dirichlet or Neumann boundary conditions on the lateral surface are obtained.
@article{TRSPY_2005_250_a7,
     author = {V. A. Kondrat'ev},
     title = {Positive {Solutions} to {Weakly} {Nonlinear} {Elliptic} {Equations} of {Second} {Order} on {Cylindrical} {Domains}},
     journal = {Informatics and Automation},
     pages = {183--191},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a7/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
TI  - Positive Solutions to Weakly Nonlinear Elliptic Equations of Second Order on Cylindrical Domains
JO  - Informatics and Automation
PY  - 2005
SP  - 183
EP  - 191
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a7/
LA  - ru
ID  - TRSPY_2005_250_a7
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%T Positive Solutions to Weakly Nonlinear Elliptic Equations of Second Order on Cylindrical Domains
%J Informatics and Automation
%D 2005
%P 183-191
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a7/
%G ru
%F TRSPY_2005_250_a7
V. A. Kondrat'ev. Positive Solutions to Weakly Nonlinear Elliptic Equations of Second Order on Cylindrical Domains. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 183-191. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a7/

[1] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tp. MIAN, 234, Nauka, M., 2001 | MR | Zbl

[2] Kondrat'ev V. A., “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains”, Russ. J. Math. Phys., 10:1 (2003), 11–20 | MR

[3] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, 2nd ed., Springer, Berlin, 1983 ; Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl | MR | Zbl

[4] Littman W., Stampacchia G., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Mat. Ser. 3, 17 (1963), 43–77 | MR | Zbl