Buffer Phenomenon in Nonlinear Physics
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182

Voir la notice de l'article provenant de la source Math-Net.Ru

The buffer phenomenon is a property of a mathematical model of a nonlinear distributed system to have any predetermined finite number of attractors of the same type (stable equilibrium states, cycles, tori, etc.) for an appropriate choice of its parameters. A rigorous mathematical investigation of the buffer phenomenon has become possible due to the application and development of the apparatus of asymptotic analysis. The buffer property is typical for a wide class of mathematical models that describe many nonlinear processes in physics (radio physics, mechanics, optics, and combustion theory) and are represented by boundary value problems for systems of partial differential equations. The relationship between the buffer phenomenon and the onset of turbulence and dynamical chaos is traced.
@article{TRSPY_2005_250_a6,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Buffer {Phenomenon} in {Nonlinear} {Physics}},
     journal = {Informatics and Automation},
     pages = {112--182},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a6/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Buffer Phenomenon in Nonlinear Physics
JO  - Informatics and Automation
PY  - 2005
SP  - 112
EP  - 182
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a6/
LA  - ru
ID  - TRSPY_2005_250_a6
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Buffer Phenomenon in Nonlinear Physics
%J Informatics and Automation
%D 2005
%P 112-182
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a6/
%G ru
%F TRSPY_2005_250_a6
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer Phenomenon in Nonlinear Physics. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a6/