Homogenized Tensor on Networks
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 105-111

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenized tensor that arises in problems of elasticity theory on periodic networks is studied. On the basis of the relaxation formula, optimal networks are described for which the homogenized tensor can be determined in an explicit form, exact calculations for some nonoptimal networks are performed, and the nondegeneracy properties of the homogenized tensor are investigated. Scalar problems are handled similarly; the class of optimal networks for them proves to be larger than that for problems of elasticity theory.
@article{TRSPY_2005_250_a5,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Homogenized {Tensor} on {Networks}},
     journal = {Informatics and Automation},
     pages = {105--111},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a5/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Homogenized Tensor on Networks
JO  - Informatics and Automation
PY  - 2005
SP  - 105
EP  - 111
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a5/
LA  - ru
ID  - TRSPY_2005_250_a5
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Homogenized Tensor on Networks
%J Informatics and Automation
%D 2005
%P 105-111
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a5/
%G ru
%F TRSPY_2005_250_a5
V. V. Zhikov; S. E. Pastukhova. Homogenized Tensor on Networks. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 105-111. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a5/