$\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogenization problems with holes for strongly local Dirichlet forms in the cases of the Dirichlet and Neumann homogeneous conditions on the boundaries of the holes. In the second case, the main difficulties arise from the absence of a group structure on the underlying space and from the nonperiodic distribution of the holes. Complete proofs of the results will appear later.
@article{TRSPY_2005_250_a12,
     author = {M. Biroli},
     title = {$\Gamma$-convergence for {Strongly} {Local} {Dirichlet} {Forms} in {Open} {Sets} with {Holes}},
     journal = {Informatics and Automation},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/}
}
TY  - JOUR
AU  - M. Biroli
TI  - $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
JO  - Informatics and Automation
PY  - 2005
SP  - 262
EP  - 271
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/
LA  - en
ID  - TRSPY_2005_250_a12
ER  - 
%0 Journal Article
%A M. Biroli
%T $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
%J Informatics and Automation
%D 2005
%P 262-271
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/
%G en
%F TRSPY_2005_250_a12
M. Biroli. $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/