$\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogenization problems with holes for strongly local Dirichlet forms in the cases of the Dirichlet and Neumann homogeneous conditions on the boundaries of the holes. In the second case, the main difficulties arise from the absence of a group structure on the underlying space and from the nonperiodic distribution of the holes. Complete proofs of the results will appear later.
@article{TRSPY_2005_250_a12,
     author = {M. Biroli},
     title = {$\Gamma$-convergence for {Strongly} {Local} {Dirichlet} {Forms} in {Open} {Sets} with {Holes}},
     journal = {Informatics and Automation},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/}
}
TY  - JOUR
AU  - M. Biroli
TI  - $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
JO  - Informatics and Automation
PY  - 2005
SP  - 262
EP  - 271
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/
LA  - en
ID  - TRSPY_2005_250_a12
ER  - 
%0 Journal Article
%A M. Biroli
%T $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
%J Informatics and Automation
%D 2005
%P 262-271
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/
%G en
%F TRSPY_2005_250_a12
M. Biroli. $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a12/

[1] Allaire G., Murat F., “Homogenization of the Neumann problem with nonisolated holes”, Asymptotic Anal., 7:2 (1993), 81–95 | MR | Zbl

[2] Biroli M., “The Wiener test for Poincaré–Dirichlet forms”, Classical and modern potential theory and applications, Kluwer, Dordrecht, 1994, 93–104 | MR | Zbl

[3] Biroli M., Mosco U., “Formes de Dirichlet et estimations structurelles dans les milieux discontinus”, C. R. Acad. sci. Paris. Sér. 1, 313:9 (1991), 593–598 | MR | Zbl

[4] Biroli M., Mosco U., “A Saint-Venant principle for Dirichlet forms on discontinuous media”, Ann. Mat. Pura ed Appl. Ser. 4, 169 (1995), 125–181 | DOI | MR | Zbl

[5] Biroli M., Tchou N. A., “Asymptotic behavior of relaxed Dirichlet problems involving a Dirichlet–Poincaré inequality”, Ztschr. Anal. und Anwend., 16 (1997), 281–309 | MR | Zbl

[6] Biroli M., Tchou N. A., “Relaxation for Dirichlet problems involving a Dirichlet form”, Ztschr. Anal. und Anwend., 19 (1997), 203–225 | MR

[7] Biroli M., Tchou N. A., Zhikov V. V., “Homogenization for Heisenberg operator with Neumann boundary conditions”, Ric. Mat. Suppl., 48 (1999), 45–59 | MR | Zbl

[8] Biroli M., Tersian S., “On the existence of nontrivial solutions to a semilinear equation relative to a Dirichlet form”, Rend. Ist. Lombardo Accad. Sci. e Lett. A., 131 (1997), 151–168 | MR

[9] Briane M., “Poincaré–Wirtinger's inequality for the homogenization in perforated domains”, Boll. Un. Mat. Ital. Ser. 7B, 11 (1997), 53–82 | MR | Zbl

[10] Briane M., Damlamian A., Donato P., “H-convergence for perforated domains”, Nonlinear partial differential equations and their applications: Collège de France Seminar., V. 13, Pitman Res. Notes Math. Ser., 391, Longman, Harlow, 1998, 62–100 | MR | Zbl

[11] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs”, Collège de France Seminar., V. 2, Res. Notes Math., 60, Pitman, London, 1982, 98–138 | MR

[12] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs, II”, Nonlinear partial differential equations and their applications: Collège de France Seminar., V. 3, Res. Notes Math., 70, Pitman, London, 1983, 154–178 | MR

[13] Cioranescu D., Saint Jean Paulin J., “Homogenization in open sets with holes”, J. Math. Anal. and Appl., 71:2 (1979), 590–607 | DOI | MR | Zbl

[14] Dal Maso G., “$\Gamma$-convergence and $\mu$ capacities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 14 (1987), 423–464 | MR | Zbl

[15] Dal Maso G., Mosco U., “Wiener criteria and energy decay for relaxed Dirichlet problems”, Arch. Ration. Mech. and Anal., 95 (1986), 345–387 | DOI | MR | Zbl

[16] Dal Maso G., Mosco U., “Wiener's criterion and $\Gamma$-convergence”, Appl. Math. and Optim., 15:1 (1987), 15–63 | DOI | MR | Zbl

[17] Damlamian A., Donato P., “Periodic homogenization in perforated domains with Neumann conditions”, Homogenization (Naples, 2001), Gakuto Intern. Ser. Math. Sci., 18, Gakkotosho, Tokyo, 2003, 169–182 | MR | Zbl

[18] Fukushima M., Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam, 1980 | MR | Zbl

[19] Khruslov E. Ya., “Metod ortogonalnykh proektsii i zadacha Dirikhle v oblastyakh s melkozernistoi granitsei”, Mat. sb., 88 (1972), 38–60 | Zbl

[20] Khruslov E. Ya., “Asimptoticheskoi povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl

[21] Lu G., “On Harnack's inequality for a class of strongly degenerate Schrödinger operators formed by vector fields”, Diff. and Integr. Equat., 7:1 (1994), 73–100 | MR

[22] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974 | MR

[23] Mosco U., Compact families of Dirichlet forms, Cours 3me cycle, Univ. Paris VI, 1992

[24] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123 (1994), 368–421 | DOI | MR | Zbl

[25] Mosco U., “Dirichlet forms and self-similarity”, New directions in Dirichlet forms, AMS/IP Stud. Adv. Math., 8, Intern. Press, Cambridge, MA, 1998, 117–155 | MR

[26] Zhikov V. V., “Ob usrednenii v perforirovannykh sluchainykh oblastyakh obschego vida”, Mat. zametki, 53:1 (1993), 41–58 | MR | Zbl

[27] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russ. J. Math. Phys., 2:3 (1994), 393–408 | MR | Zbl

[28] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl