Quantum Observables: An Algebraic Aspect
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 226-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum observables are represented as series in noncommuting generators $\hat x$ and $\hat p$. The space of such series turns out to be an infinite-dimensional associative algebra and a Lie algebra. The concept of convergence is presented for such series. In this language, quantum objects turn out to be noncommutative analogues of classical objects. Quantum analogues are proved for several basic theorems of classical mechanics.
@article{TRSPY_2005_250_a11,
     author = {D. V. Treschev},
     title = {Quantum {Observables:} {An} {Algebraic} {Aspect}},
     journal = {Informatics and Automation},
     pages = {226--261},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a11/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Quantum Observables: An Algebraic Aspect
JO  - Informatics and Automation
PY  - 2005
SP  - 226
EP  - 261
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a11/
LA  - ru
ID  - TRSPY_2005_250_a11
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Quantum Observables: An Algebraic Aspect
%J Informatics and Automation
%D 2005
%P 226-261
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a11/
%G ru
%F TRSPY_2005_250_a11
D. V. Treschev. Quantum Observables: An Algebraic Aspect. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 226-261. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a11/

[1] Abraham R., Marsden J., Foundations of mechanics, Benjamin/Cummings, Reading, MA, 1978 | MR | Zbl

[2] Berezin F. A., Shubin M. A., Lektsii po kvantovoi mekhanike, MGU, M., 1972

[3] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algebras”, Commun. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[4] de Verdiere Y. C., “Spectre conjoint d'opérateurs pseudo-differentiels qui commutent. II: Le cas intégrable”, Math. Ztschr., 171 (1980), 51–73 | DOI | MR | Zbl

[5] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov-matematikov, LGU, L., 1980

[6] Folland G., Harmonic analysis in phase space, Princeton Univ. Press, Princeton, 1988 | MR

[7] Hietarinta J., Pure quantum integrability, , 1997 arXiv: solv-int/9708010 | MR

[8] Hietarinta J., “Solvability in quantum mechanics and classically superfluous invariants”, J. Phys. A.: Math. and Gen., 22 (1989), L143–L147 | DOI | MR

[9] Kozlov V. V., Treschev D. V., “Polinomialnye zakony sokhraneniya v kvantovykh sistemakh”, TMF, 140:3 (2004), 460–479 | MR | Zbl

[10] Kozlov V. V., Treschev D. V., “Zakony sokhraneniya v kvantovykh sistemakh na tore”, DAN, 398:3 (2004), 314–318 | MR