Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 5-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological classification is obtained for a certain class of Morse–Smale diffeomorphisms defined on a closed smooth orientable three-dimensional manifold $M$. The class $G$ of these diffeomorphisms is determined by the following conditions: the wandering set of each diffeomorphism $f\in G$ contains a finite number of heteroclinic orbits and does not contain heteroclinic curves. For a diffeomorphism $f\in G$, a complete topological invariant (a scheme $S(f)$) is introduced. In particular, this scheme describes the topological structure of the embedding of two-dimensional separatrices of saddle periodic points into an ambient manifold. Moreover, the realization problem is solved: for each abstract invariant (perfect scheme $S$), a representative $f_S$ of a class of topologically conjugate diffeomorphisms is constructed whose scheme is equivalent to the initial one.
@article{TRSPY_2005_250_a0,
     author = {Ch. Bonatti and V. Z. Grines and O. V. Pochinka},
     title = {Classification of {Morse--Smale} {Diffeomorphisms} with {a~Finite} {Set} of {Heteroclinic} {Orbits} on {3-Manifolds}},
     journal = {Informatics and Automation},
     pages = {5--53},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a0/}
}
TY  - JOUR
AU  - Ch. Bonatti
AU  - V. Z. Grines
AU  - O. V. Pochinka
TI  - Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
JO  - Informatics and Automation
PY  - 2005
SP  - 5
EP  - 53
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a0/
LA  - ru
ID  - TRSPY_2005_250_a0
ER  - 
%0 Journal Article
%A Ch. Bonatti
%A V. Z. Grines
%A O. V. Pochinka
%T Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
%J Informatics and Automation
%D 2005
%P 5-53
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a0/
%G ru
%F TRSPY_2005_250_a0
Ch. Bonatti; V. Z. Grines; O. V. Pochinka. Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds. Informatics and Automation, Differential equations and dynamical systems, Tome 250 (2005), pp. 5-53. http://geodesic.mathdoc.fr/item/TRSPY_2005_250_a0/

[1] Anosov D. V., “Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178

[2] Anosov D. V., “Elementarnaya teoriya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 178–204

[3] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl

[4] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1 (1990), 3–32 | MR | Zbl

[5] Aranson S. Kh., Grines V. Z., “Kaskady na poverkhnostyakh”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 148–187 | MR | Zbl

[6] Arnold V. I., “Malye znamenateli. I: Otobrazhenie okruzhnosti na sebya”, Izv. AN SSSR. Ser. mat., 25 (1961), 21–86 | MR

[7] Anosov D. V., Solodov V. V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR | Zbl

[8] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. Mosk. mat. o-va, 28, 1973, 181–214 | Zbl

[9] Asimov D., “Round handles and non-singular Morse–Smale flows”, Ann. Math. Ser. 2, 102 (1975), 41–54 | DOI | MR | Zbl

[10] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientno-podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Ch. 1”, Metody kachestvennoi teorii differentsialnykh uravnenii, Sb. nauch. tr., Gork. gos. un-t, Gorkii, 1985, 22–38 | MR

[11] Bezdenezhnykh A. N., Grines V. Z., “Diffeomorfizmy s orientiruemymi geteroklinicheskimi mnozhestvami na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differentsialnykh uravnenii, Sb. nauch. tr., Gork. gos. un-t, Gorkii, 1985, 139–152 | MR

[12] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientno-podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Ch. 2”, Metody kachestvennoi teorii differentsialnykh uravnenii, Sb. nauch. tr., Gork. gos. un-t, Gorkii, 1987, 24–32 | MR

[13] Bezdenezhnykh A. N., Grines V. Z., “Diffeomorfizmy s orientiruemymi geteroklinicheskimi mnozhestvami na dvumernykh mnogoobraziyakh”, Differentsialnye i integralnye uravneniya, Sb. nauch. tr., Gork. gos. un-t, Gorkii, 1985, 111–112 | MR

[14] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[15] Bonatti C., Grines V., Langevin R., “Dynamical systems in dimension $2$ and $3$: conjugacy invariants and classification”, Comput. and Appl. Math., 20:1,2 (2001), 11–50 | MR | Zbl

[16] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology and Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[17] Bonatti Kh., Grines V. Z., Medvedev V. S., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl

[18] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[19] Bonatti C., Grines V., Pécou E. , “Two-dimensional links and diffeomorphisms on 3-manifolds”, Ergod. Theory and Dyn. Syst., 22:3 (2002), 687–710 | DOI | MR | Zbl

[20] Bonatti Kh., Grines V., Pochinka O., “Klassifikatsiya prosteishikh negradientno-podobnykh diffeomorfizmov na 3-mnogoobraziyakh”, Sovremennaya matematika i ee prilozheniya, 7, In-t kibernetiki AN Gruzii, 2003, 43–71

[21] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. Math. France, Paris, 1998 | MR | Zbl

[22] Fleitas G., “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR | Zbl

[23] Franks J., “The periodic structure of nonsingular Morse–Smale flows”, Comment. Math. Helv., 53 (1978), 279–294 | DOI | MR | Zbl

[24] Franks J., “Symbolic dynamics in flows on three-manifolds”, Trans. Amer. Math. Soc., 279:1 (1983), 231–236 | DOI | MR | Zbl

[25] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[26] Grines V. Z., “O topologicheskoi klassifikatsii strukturno ustoichivykh diffeomorfizmov poverkhnostei s odnomernymi attraktorami i repellerami”, Mat. sb., 188:4 (1997), 57–94 | MR | Zbl

[27] Grines V. Z., Zhuzhoma E. V., “Strukturno ustoichivye diffeomorfizmy s bazisnymi mnozhestvami korazmernosti odin”, Izv. RAN. Ser. mat., 66:2 (2002), 3–66 | MR | Zbl

[28] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966, 184 pp.

[29] Kosnevski Ch., Nachalnyi kurs algebraicheskoi topologii, Mir, M., 1983, 300 pp. | MR

[30] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977, 496 pp. | MR | Zbl

[31] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. and Appl., 54, Cambridge Univ. Press, Cambridge, 1995 ; Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[32] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278 | MR | Zbl

[33] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, DAN SSSR, 14:5 (1937), 251–257

[34] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955), 557–560 | MR | Zbl

[35] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. GGU, no. 12, Gorkii, 1939, 215–229

[36] Morgan J. W., “Non-singular Morse–Smale flows on 3-dimensional manifolds”, Topology, 18:1 (1979), 41–53 | DOI | MR | Zbl

[37] Munkres J., “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. Math., 72:3 (1960), 521–554 | DOI | MR | Zbl

[38] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975, 304 pp. | MR | Zbl

[39] Nielsen J., “Die Struktur periodischer Transformationen von Flächen”, Danske Vid. Selsk. Math.-fys. Medd., 15:1 (1937), 1–77 | Zbl

[40] Palis J., “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR

[41] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 ; “Structural stability on two-dimensional manifolds. A further remark”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl | DOI | MR | Zbl

[42] Peixoto M. M., “On a classification of flows on $2$-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia, Salvador (Brazil), 1971, Acad. Press, New York, London, 1973, 389–419 | MR

[43] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[44] Pliss V. A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. LGU. Ser. mat., mekh., astron., 13:3 (1960), 15–23 | MR | Zbl

[45] Pochinka O., “On topological conjugacy of simplest Morse–Smale diffeomorphisms on $S^3$ with a finite number of heteroclinic orbits”, Progress in nonlinear science, 1, In-t prikl. fiz. RAN, N. Novgorod, 2002, 338–345 | MR

[46] Palis J., Smale S., “Structural stability theorems”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 ; Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13:2 (1969), 145–155 | MR

[47] Rolfsen D., Knots and links, Math. Lect. Ser., 7, Publish or Perish, Houston, 1990 | MR | Zbl

[48] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[49] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | MR

[50] Thurston W., Three-dimensional geometry and topology, Princeton Math. Ser., 1, Princeton: Princeton Univ. Press, 1997 ; Tërston U., Trekhmernaya geometriya i topologiya, 1, MTsNMO, M., 2001, 310 pp. | MR | Zbl

[51] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239

[52] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp. | MR | Zbl