A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 86-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical–analytic block method proposed by the author is applied to construct an approximate solution to the Dirichlet problem for the Laplace equation in a disk with an elliptic hole that has two cuts. The construction employs two blocks–rings and an elementary conformal mapping. It is shown that the approximate solution converges, in the uniform metric, exponentially with respect to the order of a rapidly solvable system of linear algebraic equations.
@article{TRSPY_2005_248_a8,
     author = {E. A. Volkov},
     title = {A~Block {Method} for {Solving} the {Laplace} {Equation} in {a~Disk} with {a~Hole} {That} {Has} {Cuts}},
     journal = {Informatics and Automation},
     pages = {86--93},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts
JO  - Informatics and Automation
PY  - 2005
SP  - 86
EP  - 93
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a8/
LA  - ru
ID  - TRSPY_2005_248_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%T A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts
%J Informatics and Automation
%D 2005
%P 86-93
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a8/
%G ru
%F TRSPY_2005_248_a8
E. A. Volkov. A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 86-93. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a8/

[1] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987

[2] Akhiezer N.I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970

[3] Volkov E.A., “Razvitie blochnogo metoda resheniya uravneniya Laplasa dlya konechnykh i beskonechnykh krugovykh mnogougolnikov”, Tr. MIAN, 187 (1989), 39–68 | MR

[4] Volkov E.A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press, Boca Raton (Florida), 1994 | MR | Zbl