Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that functions from the Sobolev spaces $W_p^l(\Omega )$, where $\Omega \subset \mathbb R^n$ is an arbitrary bounded open set, can be extended from $\Omega $ to $\mathbb R^n$ while preserving certain smoothness in the metric of $L_q$, where $q p$. It is established that an extension that preserves certain smoothness in the metric of $L_p$ is possible if and only if the embedding $W_p^l(\Omega )\subset L_p(\Omega )$ is compact.
@article{TRSPY_2005_248_a7,
     author = {V. I. Burenkov},
     title = {Extension of {Functions} {Preserving} {Certain} {Smoothness} and {Compactness} of {Embeddings} for {Spaces} of {Differentiable} {Functions}},
     journal = {Informatics and Automation},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
JO  - Informatics and Automation
PY  - 2005
SP  - 74
EP  - 85
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a7/
LA  - ru
ID  - TRSPY_2005_248_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
%J Informatics and Automation
%D 2005
%P 74-85
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a7/
%G ru
%F TRSPY_2005_248_a7
V. I. Burenkov. Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a7/