Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2005_248_a6, author = {S. V. Bochkarev}, title = {New {Inequalities} in the {Littlewood--Paley} {Theory} and {Estimates} of the~$L_1$ {Norm} of {Trigonometric} {Series} and {Polynomials}}, journal = {Informatics and Automation}, pages = {64--73}, publisher = {mathdoc}, volume = {248}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/} }
TY - JOUR AU - S. V. Bochkarev TI - New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials JO - Informatics and Automation PY - 2005 SP - 64 EP - 73 VL - 248 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/ LA - ru ID - TRSPY_2005_248_a6 ER -
%0 Journal Article %A S. V. Bochkarev %T New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials %J Informatics and Automation %D 2005 %P 64-73 %V 248 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/ %G ru %F TRSPY_2005_248_a6
S. V. Bochkarev. New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 64-73. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/
[1] Zigmund A., Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965
[2] Kolmogoroff A.N., “Une série de Fourier–Lebesgue divergente presque partout”, Fund. math., 4 (1923), 324–328 | Zbl
[3] Kakhan Zh.-P., Sluchainye funktsionalnye ryady, Mir, M., 1973
[4] Bochkarev S.V., “Ryady Valle Pussena v prostranstvakh BMO, $L_1$ i $H^1(D)$ i multiplikativnye neravenstva”, Tr. MIAN, 210 (1995), 41–64 | MR | Zbl
[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984
[6] Bochkarev S.V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218 (1997), 74–76 | MR | Zbl
[7] Bochkarev S.V., “Multiplikativnye otsenki $L_1$-normy eksponentsialnykh summ”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Izd-vo AFTs, M., 1999, 57–68 | MR
[8] Bochkarev S.V., “Metod otsenki $L_1$-normy eksponentsialnoi summy na osnove arifmeticheskikh svoistv spektra”, Tr. MIAN, 232 (2001), 94–101 | Zbl
[9] Bochkarev S.V., “Novyi metod otsenki integralnoi normy eksponentsialnykh summ, prilozhenie k kvadratichnym summam”, Dokl. RAN, 386:2 (2002), 156–159 | MR | Zbl
[10] Bochkarev S.V., “Multiplikativnye neravenstva dlya funktsii iz prostranstva Khardi $H^1$ i ikh primenenie k otsenke eksponentsialnykh summ”, Tr. MIAN, 243 (2003), 96–103 | Zbl
[11] Bochkarev S.V., “Postroenie bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, DAN SSSR, 264:6 (1982), 1295–1297 | MR | Zbl
[12] Bochkarev S.V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Recent trends in mathematics, Teubner, Leipzig, 1982, 38–46
[13] Bochkarev S.V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Tr. MIAN, 164 (1983), 49–74 | MR | Zbl
[14] Bochkarev S.V., “Teorema Khausdorfa–Yunga–Rissa v prostranstvakh Lorentsa i multiplikativnye neravenstva”, Tr. MIAN, 219 (1997), 103–114 | Zbl
[15] Chandrasekkharan K., Arifmeticheskie funktsii, Nauka, M., 1975