New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 64-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Extensions of the Littlewood–Paley theorem to the limit values $p=1$ and $p=\infty$ are applied in order to obtain new lower bounds for the $L_1$ norms of trigonometric series and polynomials. Applications of the method to the estimation of polynomials with quadratic spectrum are suggested.
@article{TRSPY_2005_248_a6,
     author = {S. V. Bochkarev},
     title = {New {Inequalities} in the {Littlewood--Paley} {Theory} and {Estimates} of the~$L_1$ {Norm} of {Trigonometric} {Series} and {Polynomials}},
     journal = {Informatics and Automation},
     pages = {64--73},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
JO  - Informatics and Automation
PY  - 2005
SP  - 64
EP  - 73
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/
LA  - ru
ID  - TRSPY_2005_248_a6
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
%J Informatics and Automation
%D 2005
%P 64-73
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/
%G ru
%F TRSPY_2005_248_a6
S. V. Bochkarev. New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 64-73. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a6/