Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation, embedding, and extension theorems are proved for Banach spaces $B_{p,q}^s(G)$ and $L_{p,q}^s(G)=F_{p,q}^s(G)$, $1 p,q\infty$, of functions that have a variable smoothness $s=s(x)$ and are defined on a domain $G\subset \mathbb R ^n$ with a Lipschitz boundary.
@article{TRSPY_2005_248_a5,
     author = {O. V. Besov},
     title = {Interpolation, {Embedding,} and {Extension} of {Spaces} of {Functions} of {Variable} {Smoothness}},
     journal = {Informatics and Automation},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
JO  - Informatics and Automation
PY  - 2005
SP  - 52
EP  - 63
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/
LA  - ru
ID  - TRSPY_2005_248_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
%J Informatics and Automation
%D 2005
%P 52-63
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/
%G ru
%F TRSPY_2005_248_a5
O. V. Besov. Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/

[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[2] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 ; Трибель Х., Теория функциональных пространств, Мир, М., 1986 | MR | Zbl | MR | Zbl

[3] Kalyabin G.A., Lizorkin P.I., “Spaces of functions of generalized smoothness”, Math. Nachr., 133 (1987), 7–32 | DOI | MR | Zbl

[4] Merucci C., “Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces”, Lect. Notes Math., 1070 (1984), 183–201 | DOI | MR | Zbl

[5] Cobos P., Fernandez D.L., “Hardy–Sobolev spaces and Besov spaces with a function parameter”, Lect. Notes Math., 1302 (1988), 158–170 | DOI | MR | Zbl

[6] Besov O.V., “Vlozheniya prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214 (1997), 25–58 | Zbl

[7] Besov O.V., “Ekvivalentnye normirovki prostranstv funktsii peremennoi gladkosti”, Tr. MIAN, 243 (2003), 87–95 | Zbl

[8] Leopold H.-G., Pseudodifferentialoperatoren und Funktionenräume variabler Glattheit: Diss. B, Friedrich-Schiller-Univ., Jena, 1987 | MR

[9] Leopold H.-G., “On function spaces of variable order of differentiation”, Forum math., 3 (1991), 1–21 | DOI | MR | Zbl

[10] Besov O.V., “O prostranstvakh funktsii peremennoi gladkosti, opredelyaemykh psevdodifferentsialnymi operatorami”, Tr. MIAN, 227 (1999), 56–74 | Zbl

[11] Triebel H., Interpolation theory, function spaces, differential operators, VEB Dtsch. Verl. Wiss., Berlin, 1978 ; Трибель Х., Теория интерполяции, функциональные пространства, дифференциальные операторы, Мир, М., 1980 | MR | MR

[12] Bergh J., Löfström J., Interpolation spaces: An introduction, Springer, Heidelberg, 1976 ; Берг Й., Лёфстрём Й., Интерполяционные пространства: Введение, Мир, М., 1980 | MR | Zbl | MR

[13] Besov O.V., “Interpolyatsiya i vlozheniya prostranstv obobschennykh funktsii $B_{p,q}^s$, $F_{p,q}^s$ na oblasti”, Tr. MIAN, 219 (1997), 80–102 | Zbl