Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation, embedding, and extension theorems are proved for Banach spaces $B_{p,q}^s(G)$ and $L_{p,q}^s(G)=F_{p,q}^s(G)$, $1 p,q\infty$, of functions that have a variable smoothness $s=s(x)$ and are defined on a domain $G\subset \mathbb R ^n$ with a Lipschitz boundary.
@article{TRSPY_2005_248_a5,
     author = {O. V. Besov},
     title = {Interpolation, {Embedding,} and {Extension} of {Spaces} of {Functions} of {Variable} {Smoothness}},
     journal = {Informatics and Automation},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
JO  - Informatics and Automation
PY  - 2005
SP  - 52
EP  - 63
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/
LA  - ru
ID  - TRSPY_2005_248_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
%J Informatics and Automation
%D 2005
%P 52-63
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/
%G ru
%F TRSPY_2005_248_a5
O. V. Besov. Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a5/