Invariant Subspaces of Dissipative Operators in a~Space with Indefinite Metric
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 294-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the existence of maximal nonnegative invariant subspaces is proved for a special class of dissipative operators in a Hilbert space with indefinite inner product. It is shown that the spectra of the restrictions of these operators on the corresponding invariant subspaces lie in the closed upper half-plane. The theorem obtained is a generalization of the well-known results of L. S. Pontryagin, H. K. Langer, M. G. Krein, and T. Ya. Azizov devoted to this subject.
@article{TRSPY_2005_248_a26,
     author = {A. A. Shkalikov},
     title = {Invariant {Subspaces} of {Dissipative} {Operators} in {a~Space} with {Indefinite} {Metric}},
     journal = {Informatics and Automation},
     pages = {294--303},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a26/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Invariant Subspaces of Dissipative Operators in a~Space with Indefinite Metric
JO  - Informatics and Automation
PY  - 2005
SP  - 294
EP  - 303
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a26/
LA  - ru
ID  - TRSPY_2005_248_a26
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Invariant Subspaces of Dissipative Operators in a~Space with Indefinite Metric
%J Informatics and Automation
%D 2005
%P 294-303
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a26/
%G ru
%F TRSPY_2005_248_a26
A. A. Shkalikov. Invariant Subspaces of Dissipative Operators in a~Space with Indefinite Metric. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 294-303. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a26/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Pontryagin L.S., “Ermitovy operatory v prostranstvakh s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. mat., 8 (1944), 243–280 | MR | Zbl

[3] Krein M.G., “Ob odnom prilozhenii printsipa nepodvizhnoi tochki v teorii operatorov v prostranstve s indefinitnoi metrikoi”, UMN, 5:2 (1950), 180–190 | MR | Zbl

[4] Langer G.K., “O $J$-ermitovykh operatorakh”, DAN SSSR, 134:2 (1962), 263–266 | MR

[5] Langer H., “Eine Veralgemeinerung eines Satzes von L. S. Pontrjagin”, Math. Ann., 152:5 (1963), 434–436 | DOI | MR | Zbl

[6] Krein M.G., “Ob odnom novom primenenii printsipa nepodvizhnoi tochki v teorii operatorov v prostranstve s indefinitnoi metrikoi”, DAN SSSR, 154:5 (1964), 1023–1026 | MR | Zbl

[7] Langer H., “Invariant subspaces of a class of operators in spaces with indefinite metric”, J. Funct. Anal., 19:3 (1975), 232–241 | DOI | MR | Zbl

[8] Langer H., “Spectral functions of definitizable operators in Krein spaces”, Lect. Notes Math., 948 (1982), 1–46 | DOI | MR | Zbl

[9] Krein M.G., Langer G.K., “O definitnykh prostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_\varkappa$”, Funkts. analiz i ego pril., 5:2 (1971), 59–71 | MR | Zbl

[10] Azizov T.Ya., “Dissipativnye operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. mat., 37:3 (1973), 639–662 | MR | Zbl

[11] Azizov T.Ya., Khoroshavin S.A., “Ob invariantnykh podprostranstvakh operatorov, deistvuyuschikh v prostranstve s indefinitnoi metrikoi”, Funkts. analiz i ego pril., 14:4 (1980), 1–7 | MR

[12] Azizov T.Ya., Iokhvidov I.S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[13] Shkalikov A.A., “O suschestvovanii invariantnykh podprostranstv u dissipativnykh operatorov v prostranstve s indefinitnoi metrikoi”, Fund. i prikl. mat., 5:2 (1999), 627–635 | MR | Zbl

[14] Atkinson F.V., Langer H., Mennicken R., Shkalikov A., “The essential spectrum of some matrix operators”, Math. Nachr., 167 (1994), 5–20 | DOI | MR | Zbl

[15] Mennicken R., Shkalikov A.A., “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl