Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 285-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic properties, as $r=|x|$ tends to infinity, of functions from $L_p^l(E_n)$ with fractional indices $l=(l_1,\dots , l_n)$ are described with the use of spherical means. Conditions under which spherical means oscillate on $[1,\infty )$ and converge at infinity are obtained.
@article{TRSPY_2005_248_a25,
     author = {S. V. Uspenskii and E. N. Vasil'eva},
     title = {Qualitative {Investigation} of {Functions} in {Generalized} {Liouville--Sobolev} {Function} {Spaces} $L_p^l(E_n)$ at {Infinity}},
     journal = {Informatics and Automation},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a25/}
}
TY  - JOUR
AU  - S. V. Uspenskii
AU  - E. N. Vasil'eva
TI  - Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
JO  - Informatics and Automation
PY  - 2005
SP  - 285
EP  - 293
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a25/
LA  - ru
ID  - TRSPY_2005_248_a25
ER  - 
%0 Journal Article
%A S. V. Uspenskii
%A E. N. Vasil'eva
%T Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
%J Informatics and Automation
%D 2005
%P 285-293
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a25/
%G ru
%F TRSPY_2005_248_a25
S. V. Uspenskii; E. N. Vasil'eva. Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 285-293. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a25/

[1] Uspenskii S.V., “O teoremakh vlozheniya dlya vesovykh klassov”, Tr. MIAN, 60, 1961, 282–303 | MR | Zbl

[2] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[3] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[4] Lizorkin P.I., “Povedenie funktsii iz liuvillevskikh klassov na beskonechnosti. O rissovykh potentsialakh proizvolnogo poryadka”, Tr. MIAN, 150, 1979, 174–197 | MR | Zbl

[5] Uspenskii S.V., Chistyakov B.M., “O vykhode na polinom reshenii odnogo klassa psevdodifferentsialnykh uravnenii na beskonechnosti”, Sib. mat. zhurn., 16:5 (1975), 1053–1070 | MR | Zbl

[6] Shmyrev G.A., “O vykhode na polinom reshenii odnogo klassa uravnenii kvaziellipticheskogo tipa pri $|x|\to\infty$”, Teoremy vlozheniya i ikh prilozheniya k zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, 1, Novosibirsk, 1983, 134–147 | MR | Zbl

[7] Kudryavtsev L.D., “O stabilizatsii funktsii v beskonechnosti i u giperploskosti”, Tr. MIAN, 134, 1975, 124–141 | Zbl

[8] Lizorkin P.I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. MIAN, 105, 1969, 89–167 | MR | Zbl

[9] Demidenko G.V., Uspenskii S.V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 436 pp. | MR | Zbl

[10] Lizorkin P.I., “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L_p^r(E_n)$. Teoremy vlozheniya”, Mat. sb., 60 (1963), 325–353 | MR | Zbl