Sampling Numbers and Embedding Constants
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 275-284
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the spaces $G_1(\Omega)=A^s_{pq}(\Omega)$ of Sobolev–Besov type in bounded Lipschitz domains $\Omega$ in $\mathbb R^n$ such that $G_1(\Omega)$ is compactly embedded in $C(\overline{\Omega})$. Sampling numbers measure the accuracy of the recovery of $f \in G_1(\Omega)$ in diverse target spaces $G_2(\Omega)$ of the same type. We prove equivalence assertions for these numbers and study what happens in limiting situations.
@article{TRSPY_2005_248_a24,
author = {H. Triebel},
title = {Sampling {Numbers} and {Embedding} {Constants}},
journal = {Informatics and Automation},
pages = {275--284},
publisher = {mathdoc},
volume = {248},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a24/}
}
H. Triebel. Sampling Numbers and Embedding Constants. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 275-284. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a24/