On Relative Widths of Classes of Differentiable Functions
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 250-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kolmogorov widths $d_{2n} (W^r_C, C)$ and relative widths $K_{2n}(W^r_C,MW^j_C,C)$ of the class $W^r_C$ with respect to $MW^j_C$, where $j r$, are considered. The minimal multiplier $M$ for which these widths are equal is estimated from above and below; the bounds obtained show that this minimal value is asymptotically equal to the Favard constant $\mathcal K_{r-j}$ as $n \to \infty $.
@article{TRSPY_2005_248_a22,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {On {Relative} {Widths} of {Classes} of {Differentiable} {Functions}},
     journal = {Informatics and Automation},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a22/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - On Relative Widths of Classes of Differentiable Functions
JO  - Informatics and Automation
PY  - 2005
SP  - 250
EP  - 261
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a22/
LA  - ru
ID  - TRSPY_2005_248_a22
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T On Relative Widths of Classes of Differentiable Functions
%J Informatics and Automation
%D 2005
%P 250-261
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a22/
%G ru
%F TRSPY_2005_248_a22
Yu. N. Subbotin; S. A. Telyakovskii. On Relative Widths of Classes of Differentiable Functions. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 250-261. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a22/

[1] Kolmogoroff A., “Über die beste Annäherung von Funkitionen einer gegebenen Funktionenklasse”, Ann. math., 37 (1936), 107–110 | DOI | MR | Zbl

[2] Konovalov V.N., “Otsenki poperechnikov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Mat. zametki, 35:3 (1984), 369–380 | MR | Zbl

[3] Babenko V.F., “O nailuchshikh ravnomernykh priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Mat. zametki, 50:6 (1991), 24–30 | MR

[4] Subbotin Yu.N., Telyakovskii S.A., “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Mat. zametki, 65:6 (1999), 871–879 | MR | Zbl

[5] Subbotin Yu.N., Telyakovskii S.A., “Otnositelnye poperechniki klassov differentsiruemykh funktsii v metrike $L^2$”, UMN, 56:4 (2001), 159–160 | MR

[6] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976

[7] Motornyi V.P., “Ob odnom neravenstve dlya modulei gladkosti periodicheskoi funktsii s ogranichennoi proizvodnoi”, DAN SSSR, 154 (1964), 45–47 | MR | Zbl

[8] Tikhomirov V.M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C([-1,1])$”, Mat. sb., 80 (1969), 290–304 | MR | Zbl

[9] Subbotin Yu.N., Telyakovskii S.A., “Priblizhenie proizvodnykh proizvodnymi interpolyatsionnykh splainov”, Tr. MIAN, 243 (2003), 320–333 | Zbl

[10] Akhiezer N.I., Lektsii po teorii approksimatsii, 2-e izd., Nauka, M., 1965