An Extremal Property of Chebyshev Polynomials
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 237-249

Voir la notice de l'article provenant de la source Math-Net.Ru

For any integer $k\ge 1$, in the metric of weighted classes $L^2(\omega )$, sharp two-sided inequalities of the form $\gamma _k\bigl |\int G^{(k)}(x) \nu _k(x)\,dx\bigr |^2\le \bigl [\mathrm {dist}_{L^2(\omega )}(G,\mathcal P_{k-1})\bigr ]^2\le \gamma _k\int \bigl |G^{(k)}(x)\bigr |^2\nu _k(x)\,dx$ are obtained for the distance between an element $G$ and the subspace $\mathcal P_{k-1}$ of all polynomials of degree ${\le }\,k-1$; these inequalities reduce to equalities for Chebyshev-type polynomials of degree $k$. On the real axis with $\omega (x)=\nu _k(x)=\frac {1}{\sqrt {2\pi }}\,e^{-x^2/2}$ and $\gamma _k=1/k!$, a precise extension of the Chernoff inequality ($k=1$) is obtained for all $k\ge 1$.
@article{TRSPY_2005_248_a21,
     author = {V. D. Stepanov},
     title = {An {Extremal} {Property} of {Chebyshev} {Polynomials}},
     journal = {Informatics and Automation},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/}
}
TY  - JOUR
AU  - V. D. Stepanov
TI  - An Extremal Property of Chebyshev Polynomials
JO  - Informatics and Automation
PY  - 2005
SP  - 237
EP  - 249
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/
LA  - ru
ID  - TRSPY_2005_248_a21
ER  - 
%0 Journal Article
%A V. D. Stepanov
%T An Extremal Property of Chebyshev Polynomials
%J Informatics and Automation
%D 2005
%P 237-249
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/
%G ru
%F TRSPY_2005_248_a21
V. D. Stepanov. An Extremal Property of Chebyshev Polynomials. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 237-249. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/