Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2005_248_a21, author = {V. D. Stepanov}, title = {An {Extremal} {Property} of {Chebyshev} {Polynomials}}, journal = {Informatics and Automation}, pages = {237--249}, publisher = {mathdoc}, volume = {248}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/} }
V. D. Stepanov. An Extremal Property of Chebyshev Polynomials. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 237-249. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a21/
[1] Chernoff H., “A note on an inequality involving the normal distribution”, Ann. Probab., 9 (1981), 533–535 | DOI | MR | Zbl
[2] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, 2-e izd., Nauka, M., 1979, 415 pp.
[3] Nikolskii S.M., Kvadraturnye formuly, 2-e izd., Nauka, M., 1974, 222 pp.
[4] Brascamp H., Lieb E., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorem, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22 (1976), 366–389 | DOI | MR | Zbl
[5] Bischoff W., Fichter M., “Optimal lower and upper bounds for the $L_p$-mean deviation of functions of a random variable”, Math. Meth. Stat., 9 (2000), 237–269 | MR | Zbl