Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 26-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain (quasi)Banach function spaces of generalized mixed positive smoothness defined by (mixed) weighted norms of smooth dyadic decompositions of their Fourier transforms, characterizations are obtained in terms of rather general averages, their Peetre maximal functions, atomic and molecular representations, as well as in terms of the so-called $\varphi$-transforms.
@article{TRSPY_2005_248_a2,
     author = {D. B. Bazarkhanov},
     title = {Equivalent {(Quasi)Norms} for {Certain} {Function} {Spaces} of {Generalized} {Mixed} {Smoothness}},
     journal = {Informatics and Automation},
     pages = {26--39},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a2/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness
JO  - Informatics and Automation
PY  - 2005
SP  - 26
EP  - 39
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a2/
LA  - ru
ID  - TRSPY_2005_248_a2
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness
%J Informatics and Automation
%D 2005
%P 26-39
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a2/
%G ru
%F TRSPY_2005_248_a2
D. B. Bazarkhanov. Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 26-39. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a2/

[1] Nikolskii S.M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. mat. zhurn., 6 (1963), 1342–1364

[2] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 ; 2-е изд., 1977 | MR

[3] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., 1996 | MR | Zbl

[4] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR

[5] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley, Chichester, 1987 | MR

[6] Stein E.M., Harmonic analysis, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[7] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[8] Tribel Kh., “Kharakterizatsiya prostranstv $F^s_{pq}$ c pomoschyu lokalnykh usrednenii; zadacha o prodolzhenii”, Tr. MIAN, 192 (1990), 207–220 | MR

[9] Rychkov V.S., “O teoreme Bui, Palyushinskogo i Teiblsona”, Tr. MIAN, 227 (1999), 286–298 | MR | Zbl

[10] Frazier M., Jawerth B., “A discrete transform and decomposition of distribution spaces”, J. Funct. Anal., 93 (1990), 34–170 | DOI | MR | Zbl

[11] Frazier M., Jawerth B., Weiss G., Littlewood–Paley theory and the study of function spaces, CBMS Reg. Conf. Ser. Math., 79, Amer. Math. Soc., Providence (RI), 1991 | MR | Zbl

[12] Besov O.V., Dzhabrailov A.D., “Interpolyatsionnye teoremy dlya nekotorykh prostranstv differentsiruemykh funktsii”, Tr. MIAN, 105 (1969), 15–20 | MR | Zbl

[13] Besov O.V., “Klassy funktsii s obobschennym smeshannym usloviem Geldera”, Tr. MIAN, 105 (1969), 21–29 | MR | Zbl

[14] Schmeisser H.-J., “On spaces of functions and distributions with mixed smoothness properties of Besov–Triebel–Lizorkin type. I, II”, Math. Nachr., 98 (1980), 233–250 ; 106 (1982), 187–200 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Bazarkhanov D.B., “Kharakterizatsii funktsionalnykh prostranstv Nikolskogo–Besova i Lizorkina–Tribelya smeshannoi gladkosti”, Tr. MIAN, 243 (2003), 53–65 | MR | Zbl

[16] Bazarkhanov D.B., “$\varphi$-Transform characterization of the Nikol'skii–Besov and Lizorkin–Triebel function spaces with mixed smoothness”, East J. Approx., 10 (2004), 119–131 | MR | Zbl

[17] Bagby R.G., “An extended inequality for the maximal function”, Proc. Amer. Math. Soc., 48 (1975), 419–422 | DOI | MR | Zbl

[18] Peetre J., “On spaces of Lizorkin–Triebel type”, Ark. Mat., 13 (1975), 123–130 | DOI | MR | Zbl

[19] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[20] Vybiral J., Characterizations of function spaces with dominating mixed smoothness properties, Jenaer Schrift. Math. Inform., Friedrich-Schiller-Univ., Jena, 2003

[21] Hochmuth R., “A $\varphi$-transform result for spaces with dominating mixed smoothness properties”, Results Math., 33 (1998), 106–119 | MR | Zbl

[22] Frazier M., Jawerth B., “Decomposition of Besov spaces”, Indiana Univ. Math. J., 34 (1985), 777–800 | DOI | MR

[23] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Besova v idealnye prostranstva”, Zap. nauch. sem. LOMI, 159 (1987), 69–82 | Zbl

[24] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Lizorkina–Tribelya”, Zap. nauch. sem. LOMI, 159 (1987), 103–112 | Zbl

[25] Netrusov Yu.V., “Metricheskie otsenki emkostei mnozhestv v prostranstvakh Besova”, Tr. MIAN, 190 (1989), 159–185 | MR

[26] Netrusov Yu.V., “Mnozhestva osobennostei funktsii iz prostranstv tipa Besova i Lizorkina–Tribelya”, Tr. MIAN, 187 (1989), 162–177 | MR

[27] Hedberg L.I., Netrusov Yu., An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Preprint, Linköping lMat. Inst. Linköping Univ., 2004, 82 pp. | MR | Zbl