Almost Normed and Quasinormed Spaces
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 130-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of various classes of almost normed spaces and the spaces of their bounded linear operators are studied. It is shown that these spaces of operators are Banach spaces under certain conditions. It is proved that a bounded linear operator can be extended, while preserving its norm, from a dense set in an almost normed space to the entire space.
@article{TRSPY_2005_248_a13,
     author = {L. D. Kudryavtsev},
     title = {Almost {Normed} and {Quasinormed} {Spaces}},
     journal = {Informatics and Automation},
     pages = {130--143},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a13/}
}
TY  - JOUR
AU  - L. D. Kudryavtsev
TI  - Almost Normed and Quasinormed Spaces
JO  - Informatics and Automation
PY  - 2005
SP  - 130
EP  - 143
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a13/
LA  - ru
ID  - TRSPY_2005_248_a13
ER  - 
%0 Journal Article
%A L. D. Kudryavtsev
%T Almost Normed and Quasinormed Spaces
%J Informatics and Automation
%D 2005
%P 130-143
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a13/
%G ru
%F TRSPY_2005_248_a13
L. D. Kudryavtsev. Almost Normed and Quasinormed Spaces. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 130-143. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a13/

[1] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[2] Kudryavtsev L.D., “Pochti normirovannye prostranstva funktsii s polinomialnoi asimptotikoi”, Mat. sb., 194:1 (2003), 103–120 | MR | Zbl