Effective Formulas for Constants in the Stechkin--Gabushin Problem
Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 124-129

Voir la notice de l'article provenant de la source Math-Net.Ru

Explicit and transparent expressions are found for the numbers $S_{n,k}$ involved in the formula $E(N,n,k)= S_{n,k} N^{-\beta /\alpha }$, where $\alpha :=(2k+1)/2n$, $\beta := 1-\alpha $, and $k\in \{0,1,\dots ,n-1\}$, for the best approximation of the operators $d^k/dx^k$ in the $C(\mathbb R_+)$ metric on the class of functions $f$ such that $\|f\|_{L_2(\mathbb R_+)} \infty$ and $\|f^{(n)}\|_{L_2(\mathbb R_+)}\le 1$ by means of linear operators $V$ whose norms satisfy the inequality $\|V\|_{L_2(\mathbb R_+)\to C(\mathbb R_+)}\le N$. Simultaneously, the values of the sharp constants $K_{n,k}$ in the Kolmogorov inequality $\|f^{(k)}\|_{C(\mathbb R_+)}\le K_{n,k}\|f^{(n)}\|^{\alpha }_{L_2(\mathbb R_+)} \|f\|^{\beta }_{L_2 (\mathbb R_+)}$ are determined. The symmetry and regularity properties of the constants, as well as their asymptotic behavior as $n\to \infty$, are studied.
@article{TRSPY_2005_248_a12,
     author = {G. A. Kalyabin},
     title = {Effective {Formulas} for {Constants} in the {Stechkin--Gabushin} {Problem}},
     journal = {Informatics and Automation},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a12/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - Effective Formulas for Constants in the Stechkin--Gabushin Problem
JO  - Informatics and Automation
PY  - 2005
SP  - 124
EP  - 129
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a12/
LA  - ru
ID  - TRSPY_2005_248_a12
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T Effective Formulas for Constants in the Stechkin--Gabushin Problem
%J Informatics and Automation
%D 2005
%P 124-129
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a12/
%G ru
%F TRSPY_2005_248_a12
G. A. Kalyabin. Effective Formulas for Constants in the Stechkin--Gabushin Problem. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 124-129. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a12/