Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2005_248_a10, author = {V. K. Zakharov}, title = {The {Riesz--Radon} {Problem} of {Characterizing} {Integrals} and the {Weak} {Compactness} of {Radon} {Measures}}, journal = {Informatics and Automation}, pages = {106--116}, publisher = {mathdoc}, volume = {248}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a10/} }
TY - JOUR AU - V. K. Zakharov TI - The Riesz--Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures JO - Informatics and Automation PY - 2005 SP - 106 EP - 116 VL - 248 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a10/ LA - ru ID - TRSPY_2005_248_a10 ER -
V. K. Zakharov. The Riesz--Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures. Informatics and Automation, Studies on function theory and differential equations, Tome 248 (2005), pp. 106-116. http://geodesic.mathdoc.fr/item/TRSPY_2005_248_a10/
[1] Fremlin D.H., Topological Riesz spaces and measure theory, Cambridge Univ. Press, Cambridge, 1974 | MR
[2] Hewitt E., Stromberg K., Real and abstract analysis, Springer, Berlin, 1965 | MR
[3] Riesz F., “Sur les opérations fonctionelles linéaires”, C. r. Acad. sci. Paris, 149 (1909), 974–977
[4] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Akad. Wiss. Wien., 122 (1913), 1295–1438 | Zbl
[5] Halmos P.R., Measure theory, Van Nostrand, Princeton, 1950 | MR | Zbl
[6] Hewitt E., “Integration on locally compact spaces. I”, Univ. Washington Publ. Math., 3 (1952), 71–75 | MR
[7] Edwards R.E., “A theory of Radon measures on locally compact spaces”, Acta math., 89 (1953), 133–164 | DOI | MR | Zbl
[8] Prokhorov Yu.V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teor. veroyatn. i ee prim., 1 (1956), 177–238 | MR | Zbl
[9] Zakharov V.K., Mikhalev A.V., “Problema Radona dlya regulyarnykh mer na proizvolnom khausdorfovom prostranstve”, Fund. i prikl. matematika, 3:3 (1997), 801–808 | MR | Zbl
[10] Zakharov V.K., Mikhalev A.V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fund. i prikl. matematika, 3:4 (1997), 1135–1172 | MR | Zbl
[11] Zakharov V.K., Mikhalev A.V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl
[12] Zakharov V.K., Mikhalev A.V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. mat., 63:5 (1999), 37–82 | MR | Zbl
[13] Zakharov V.K., Mikhalev A.V., “Svyaz mezhdu integralnymi radonovskimi predstavleniyami dlya lokalno kompaktnogo i khausdorfova prostranstv”, Fund. i prikl. matematika, 7:1 (2001), 33–46 | MR | Zbl
[14] Zakharov V.K., Mikhalev A.V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. mat., 66:6 (2002), 3–18 | MR
[15] König H., Measure and integration, Springer, Berlin, 1997 | MR
[16] Zakharov V.K., “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR
[17] Jacobs K., Measure and integral, Acad. Press, New York, 1978 | MR
[18] Bogachev V.I., Osnovy teorii mery, t. 1, 2, R Dynamics, Moskva; Izhevsk, 2003
[19] Vulikh B.Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR