On Eversion of Spheres
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 151-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

The celebrated Smale–Hirsch classification of immersions allows one to obtain several nice applications of algebraic topology to differential topology. Unfortunately, these applications have yet to be presented in books or survey papers either in Russian or in English. The purpose of this paper is to expose the simplest and most fundamental of these applications: the Smale–Kaiser theorem on the dimension of spheres that can be turned inside out, the Haefliger–Hirsch classification of immersions by means of equivariant maps, and its corollary concerning embeddings of highly connected manifolds (in particular, of spheres).
@article{TRSPY_2004_247_a9,
     author = {I. Maleshich and P. E. Pushkar' and D. Repov\v{s}},
     title = {On {Eversion} of {Spheres}},
     journal = {Informatics and Automation},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a9/}
}
TY  - JOUR
AU  - I. Maleshich
AU  - P. E. Pushkar'
AU  - D. Repovš
TI  - On Eversion of Spheres
JO  - Informatics and Automation
PY  - 2004
SP  - 151
EP  - 158
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a9/
LA  - ru
ID  - TRSPY_2004_247_a9
ER  - 
%0 Journal Article
%A I. Maleshich
%A P. E. Pushkar'
%A D. Repovš
%T On Eversion of Spheres
%J Informatics and Automation
%D 2004
%P 151-158
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a9/
%G ru
%F TRSPY_2004_247_a9
I. Maleshich; P. E. Pushkar'; D. Repovš. On Eversion of Spheres. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 151-158. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a9/

[1] Browder W., Surgery on simply-connected manifolds, Ergebn. Math., 65, Springer, Berlin, Heidelberg, New York, 1972 ; Brauder V., Perestroiki odnosvyaznykh mnogoobrazii, Nauka, M., 1984 | MR | Zbl | MR

[2] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[3] Gromov M., Partial differential relations, Ergebn. Math., 9, Springer, Berlin, Heidelberg, New York, 1986 ; Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR | Zbl | MR

[4] Haefliger A., “Plongements différentiables dans le domaine stable”, Comment. Math. Helv., 37 (1962/63), 155–176 | DOI | MR | Zbl

[5] Haefliger A., “Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$”, Ann. Math. Ser. 2, 83 (1966), 402–436 | DOI | MR | Zbl

[6] Haefliger A., Hirsch M. W., “Immersions in the stable range”, Ann. Math. Ser. 2, 75 (1962), 231–241 | DOI | MR | Zbl

[7] Haefliger A., Poenaru V., “La classification des immersions combinatoires”, Publ. Math. IHES, 1964, no. 23, 75–91 | MR

[8] Harris L. S., “Intersections and embeddings of polyhedra”, Topology, 8 (1969), 1–26 | DOI | MR | Zbl

[9] Hirsch M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[10] James I. M., “On the iterated suspension”, Quart. J. Math. Oxford., 5 (1954), 1–10 | DOI | MR | Zbl

[11] Kaiser U., “Immersions in codimension $1$ up to regular homotopy”, Arch. Math., 51 (1988), 371–377 | DOI | MR

[12] Kervaire M., “An interpretation of G. Whitehead's generalization of H. Hopf's invariant”, Ann. Math. Ser. 2, 69 (1959), 345–365 | DOI | MR | Zbl

[13] Kirby R. C., “Problems in low-dimensional topology”, Geometric topology, Pt. 2, ed. W. H. Kazez, Amer. Math. Soc., Providence, RI, 1997, 35–473 ; http://www.math.berkeley.edu/~kirby/problems.ps.gz | MR | Zbl

[14] Koschorke U., Sanderson B., “Geometric interpretation of the generalized Hopf invariant”, Math. Scand., 41 (1977), 199–217 | MR

[15] Milgram R. J., Rees E., “On the normal bundle to an embedding”, Topology, 10 (1971), 299–308 | DOI | MR | Zbl

[16] Novikov S. P., “Gomotopicheski ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR. Ser. mat., 28 (1964), 365–474

[17] Novikov S. P., “Topologiya”, Topologiya – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 12, VINITI, M., 1986, 5–252 | MR

[18] Repovsh D., Skopenkov A., “Novye rezultaty o vlozhimosti poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–109 | MR

[19] Skopenkov A. B., “On the deleted product criterion for embeddability of manifolds in $\mathbb{R}^m$”, Comment. Math. Helv., 72 (1997), 543–555 | DOI | MR | Zbl

[20] Skopenkov A. B., “On the deleted product criterion for embeddability in $\mathbb{R}^m$”, Proc. Amer. Math. Soc., 126:8 (1998), 2467–2476 | DOI | MR | Zbl

[21] Smale S., “The classification of immersions of spheres in Euclidean spaces”, Ann. Math. Ser. 2, 69 (1959), 327–344 | DOI | MR | Zbl

[22] Segal J., Skopenkov A., Spież S., “Embedding of polyhedra in $\mathbb{R}^m$ and the deleted product obstruction”, Topol. and Appl., 85 (1998), 335–344 | DOI | MR | Zbl

[23] Weber C., “Plongements de polyedres dans le domaine metastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl