Theory of Spectral Sequences.~I
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 129-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory of spectral sequences in an arbitrary abelian category is described. Dual techniques for constructing spectral sequences are presented (the sequences obtained are the same but with different limit objects in general). The following objects are studied: limit objects of exact projective and injective couples, limit objects of spectral sequences, and different types of convergence (very weak and weak, strong and complete, and conditional convergence in the sense of Boardman). Theorems on complete composition rows for right-half-plane, left-half-plane, and whole-plane spectral sequences are considered. This theory is applied to (co)chain complexes, coherent (co)homology and (co)homotopy, as well as to Bockstein exact couples.
@article{TRSPY_2004_247_a8,
     author = {Yu. T. Lisitsa},
     title = {Theory of {Spectral} {Sequences.~I}},
     journal = {Informatics and Automation},
     pages = {129--150},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/}
}
TY  - JOUR
AU  - Yu. T. Lisitsa
TI  - Theory of Spectral Sequences.~I
JO  - Informatics and Automation
PY  - 2004
SP  - 129
EP  - 150
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/
LA  - ru
ID  - TRSPY_2004_247_a8
ER  - 
%0 Journal Article
%A Yu. T. Lisitsa
%T Theory of Spectral Sequences.~I
%J Informatics and Automation
%D 2004
%P 129-150
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/
%G ru
%F TRSPY_2004_247_a8
Yu. T. Lisitsa. Theory of Spectral Sequences.~I. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 129-150. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/

[1] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[2] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[3] Kuzminov V. I., Liseikin V. D., “O myagkosti induktivnogo predela myagkikh puchkov”, Sib. mat. zhurn., 12:5 (1971), 1139–1141 | MR

[4] Lisitsa Yu. T., “Kompozitsionnye ryady v slabo skhodyaschikhsya spektralnykh posledovatelnostyakh tipa Adamsa”, Vestn. RUDN. Ser. mat., 2:1 (1995), 70–88 | MR | Zbl

[5] Lisitsa Yu. T., Kogerentnye gomotopii, gomologii, kogomologii i silnaya teoriya sheipov, Dis. $\dots$ dokt. fiz.-mat. nauk, MGU, M., 2001

[6] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[7] Sklyarenko E. G., “Giper(ko)gomologii dlya tochnykh sleva kovariantnykh funktorov i teoriya gomologii topologicheskikh prostranstv”, UMN, 50:3 (1995), 109–146 | MR | Zbl

[8] Sullivan D., Geometricheskaya topologiya, Mir, M., 1975 | MR | Zbl

[9] Boardman J. M., Conditionally convergent spectral sequences, Preprint, J. Hopkins Univ., Baltimore, 1981 | MR | Zbl

[10] Bousfield A. K., Kan D. M., Homotopy limits, completion and localizations, Lect. Notes Math., 304, Springer, Berlin, Heidelberg, New York, 1972 | MR | Zbl

[11] Eckmann B., Hilton P. J., “Exact couples in an Abelian category”, J. Algebra, 3 (1966), 38–87 | DOI | MR | Zbl

[12] Eilenberg S., Moore J. C., “Limits and spectral sequences”, Topology, 1 (1961), 1–23 | DOI | MR

[13] Eilenberg S., Zilber J. A., “On products of complexes”, Amer. J. Math., 75 (1953), 200–204 | DOI | MR | Zbl

[14] Hilton P. J., Stammbach U., A course in homological algebra, Springer, New York, Heidelberg, Berlin, 1971 | MR

[15] Koszul J. L., “Sur les opérateurs de dérivation dans un anneau”, C. R. Acad. Sci. Paris, 225 (1947), 217–219 | MR | Zbl

[16] Leray J., “Structure de l'anneau d'homologie d'une représentation”, C. R. Acad. Sci. Paris, 222 (1946), 1419–1422 | MR | Zbl

[17] Lisica Yu. T., “The Alexander–Pontryagin duality theorem for coherent homology and cohomology with coefficients in sheaves of modules”, Lect. Notes Math., 1283, 1987, 148–163 | MR | Zbl

[18] Lisica Ju. T., “Second structure theorem for strong homology”, Topol. and Appl., 113:1–3 (2001), 107–134 | DOI | MR | Zbl

[19] Lisica Ju. T., “Strong bonding homology and cohomology”, Topol. and Appl. (to appear)

[20] Lisica Ju. T., Mardešić S., “Coherent prohomotopy and strong shape theory”, Glasnik Mat., 19 (1984), 335–399 | MR

[21] Lisica Ju. T., Mardešić S., “Strong homology of inverse systems of spaces, I, II, III”, Topol. and Appl., 19:1 (1985), 29–44 ; ibid 20:1, 29–37 | DOI | MR | DOI | MR | Zbl

[22] Mardešić S., “Approximate polyhedra, resolutions of maps and shape fibration”, Fund. Math., 114 (1981), 53–78 | MR | Zbl

[23] Mardešić S., Strong shape and homology, Springer, Berlin, Heidelberg, 2000 | MR

[24] Mardešić S., Miminoshvili Z., “The relative homeomorphism and wedge axioms for strong homology”, Glasnik Mat., 25:2 (1990), 387–416 | MR | Zbl

[25] Massey W. S., “Exact couples in algebraic topology”, Ann. Math., 56 (1952), 363–396 | DOI | MR

[26] Quillen D. G., Homotopical algebra, Lect. Notes Math., 43, Springer, Berlin, 1967 | MR | Zbl