Theory of Spectral Sequences.~I
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 129-150

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory of spectral sequences in an arbitrary abelian category is described. Dual techniques for constructing spectral sequences are presented (the sequences obtained are the same but with different limit objects in general). The following objects are studied: limit objects of exact projective and injective couples, limit objects of spectral sequences, and different types of convergence (very weak and weak, strong and complete, and conditional convergence in the sense of Boardman). Theorems on complete composition rows for right-half-plane, left-half-plane, and whole-plane spectral sequences are considered. This theory is applied to (co)chain complexes, coherent (co)homology and (co)homotopy, as well as to Bockstein exact couples.
@article{TRSPY_2004_247_a8,
     author = {Yu. T. Lisitsa},
     title = {Theory of {Spectral} {Sequences.~I}},
     journal = {Informatics and Automation},
     pages = {129--150},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/}
}
TY  - JOUR
AU  - Yu. T. Lisitsa
TI  - Theory of Spectral Sequences.~I
JO  - Informatics and Automation
PY  - 2004
SP  - 129
EP  - 150
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/
LA  - ru
ID  - TRSPY_2004_247_a8
ER  - 
%0 Journal Article
%A Yu. T. Lisitsa
%T Theory of Spectral Sequences.~I
%J Informatics and Automation
%D 2004
%P 129-150
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/
%G ru
%F TRSPY_2004_247_a8
Yu. T. Lisitsa. Theory of Spectral Sequences.~I. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 129-150. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a8/