Topological and Cohomological Structure of Zero-Dimensional Mappings
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 74-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modern interpretation of the author's results on the theory of zero-dimensional mappings is given, special attention being paid to its relations to commutative algebra, algebraic geometry, function algebras, and sheaf theory. These results are classified under three fields: representation of zero-dimensional mappings as a limit of maximally simple finite-to-point mappings, algebraic characterization of zero-dimensional mappings and its applications, and resolutions of sheaves related to a zero-dimensional mapping and their applications. The first part of the paper is based on the properties of the limit of local systems of spaces, which is a parametric generalization of the inverse limit of spaces. The second part rests on the fact that, from the point of view of the rings of continuous functions, zero-dimensional mappings are topological analogues of the integral closure of rings. The third part is devoted to the cohomological structure of zero-dimensional mappings. Here, the main idea is establishing a relation between the limit of a local system of simple finite-to-point mappings and two classical functors in sheaf theory, the direct and inverse images of sheaves. This relation leads to new resolutions of sheaves and new spectral sequences for the case of zero-dimensional mappings. Applications concern a characterization of the rings of continuous functions of the Menger universal compacta and the dimension-raising zero-dimensional mappings, which is one of the favorite areas of investigation of L. V. Keldysh.
@article{TRSPY_2004_247_a6,
     author = {A. V. Zarelua},
     title = {Topological and {Cohomological} {Structure} of {Zero-Dimensional} {Mappings}},
     journal = {Informatics and Automation},
     pages = {74--94},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a6/}
}
TY  - JOUR
AU  - A. V. Zarelua
TI  - Topological and Cohomological Structure of Zero-Dimensional Mappings
JO  - Informatics and Automation
PY  - 2004
SP  - 74
EP  - 94
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a6/
LA  - ru
ID  - TRSPY_2004_247_a6
ER  - 
%0 Journal Article
%A A. V. Zarelua
%T Topological and Cohomological Structure of Zero-Dimensional Mappings
%J Informatics and Automation
%D 2004
%P 74-94
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a6/
%G ru
%F TRSPY_2004_247_a6
A. V. Zarelua. Topological and Cohomological Structure of Zero-Dimensional Mappings. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 74-94. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a6/

[1] Arhangelskij A., “On closed maps increasing dimension”, Czechosl. Math. J., 18 (1968), 389–391 | MR

[2] Bestvina M., Characterizing $k$-dimensional universal Menger compacta, Mem. AMS, 71, no. 380, Amer. Math. Soc., Providence, RI, 1988 | MR

[3] Barr M., Beck J., “Homology and standard constructions”, Lect. Notes Math., 80 (1969), 245–335 | DOI | MR | Zbl

[4] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977 | MR

[5] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR

[6] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[7] Chernavskii A. V., “Geometricheskaya topologiya mnogoobrazii”, Istoriya otechestvennoi matematiki, 3, Nauk. dumka, Kiev, 1960, 473–480

[8] Constantinescu C., Cornea A., Ideale Ränder Riemannscher Flächen, Springer, Berlin etc., 1963 | MR | Zbl

[9] Dyckhoff R., “Perfect light maps as inverse limits”, Quart. J. Math. Oxford. Ser. 2, 25 (1974), 441–449 | DOI | MR | Zbl

[10] Dyckhoff R., “Categorical methods in dimension theory”, Categorical topology, Proc. Conf. (Mannheim, 1975), Lect. Notes Math., 540, Springer, Berlin, 1976, 220–242 | MR

[11] Filippov V. V., “O povedenii razmernosti pri zamknutykh otobrazheniyakh”, Tr. sem. im. I. G. Petrovskogo, 3, 1978, 177–196 | MR | Zbl

[12] Fulton U., Mak-Fërson P., Kategornyi podkhod k izucheniyu prostranstv s osobennostyami, Mir, M., 1983 | MR | Zbl

[13] Gillman L., Jerison M., Rings of continuous functions, Van Nostrand, Princeton, 1960 | MR | Zbl

[14] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, T. 1, Mir, M., 1982 | MR

[15] P. Berthelot, A. Grothendieck, L. Illusie (eds.), Théorie des intersections et théorème de Riemann–Roch, Séminaire de géométrie algébrique (SGA 6), Lect. Notes Math., 225, Springer, Berlin etc., 1971 | MR | Zbl

[16] M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique (SGA 4), Lect. Notes Math., 270, Springer, Berlin etc., 1972 | MR | Zbl

[17] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[18] Hurewicz W., “Über Abbildungen von endlichdimensional Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 34 (1933), 754–768

[19] Katetov M., “O koltsakh nepreryvnykh funktsii i razmernosti bikompaktov”, Šasop. Pěstov. Mat., 75:1 (1950), 1–17 | MR

[20] Katětov M., “A theorem on the Lebesgue dimension”, Časop. Pěstov. Mat., 75:2 (1950), 79–87 | MR | Zbl

[21] Katetov M., “O razmernosti metricheskikh prostranstv”, DAN SSSR, 79:2 (1951), 189–192 | MR

[22] Keldysh L. V., “Nulmernye otkrytye otobrazheniya”, Izv. AN SSSR. Ser. mat., 23 (1959), 165–184 | Zbl

[23] Keldysh L. V., “Nulmernye otobrazheniya, povyshayuschie razmernost”, Mat. sb., 28:3 (1951), 537–566 | Zbl

[24] Kolmogoroff A., “Über offene Abbildungen”, Ann. Math., 38 (1937), 36–38 | DOI | MR | Zbl

[25] Michael E., “Cuts”, Acta Math., 111 (1964), 1–36 | DOI | MR | Zbl

[26] Meghea C., Compactifications des espaces harmonique, Springer, Berlin etc., 1971 | MR | Zbl

[27] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[28] Pasynkov B. A., “Chastichnye topologicheskie proizvedeniya”, Tr. Mosk. mat. o-va, 13, 1965, 136–245 | MR

[29] Pasynkov B. A., “Nulmernye otobrazheniya, povyshayuschie razmernost”, UMN, 18:5 (1963), 183–190 | MR | Zbl

[30] Pasynkov B. A., “O rasprostranenii na otobrazheniya nekotorykh ponyatii i utverzhdenii, kasayuschikhsya prostranstv”, Otobrazheniya i funktory, MGU, M., 1984, 72–102 | MR

[31] Pasynkov B. A., “O geometrii nepreryvnykh otobrazhenii konechnomernykh metrizuemykh kompaktov”, Tr. MIAN, 212, 1996, 147–172 | MR

[32] Ponomarev V. I., “O prostranstvakh, soabsolyutnykh s metricheskimi”, UMN, 21:4 (1966), 101–132 | MR | Zbl

[33] Ponomarev V. I., “O nepreryvnykh razbieniyakh bikompaktov”, UMN, 12:4 (1957), 335–340 | MR

[34] Raymond F., “Cohomological and dimension theoretical properties of orbit spaces of $p$-adic actions”, Proc. Conf. on Transformation Groups (New Orleans, 1967), Springer, Berlin etc., 1968, 354–365 | MR

[35] Skordev G., “O rezolventakh nepreryvnogo otobrazheniya”, Mat. sb., 82 (1970), 532–550 | MR | Zbl

[36] Skordev G., “O rezolventakh, otvechayuschikh zamknutomu otobrazheniyu”, Mat. sb., 86 (1971), 234–247 | MR | Zbl

[37] Skordev G., “Konechnolistnye nakrytiya i rezolventa zamknutogo otobrazheniya”, Dokl. Bolg. AN., 26 (1973), 733–734 | MR | Zbl

[38] Skordev G., “O rezolventakh zamknutogo otobrazheniya”, God. Sofiisk. un-ta. FMM (1976/77), 71:1 (1982), 87–118 | MR | Zbl

[39] Skordev G., “Rezolventy Zarelua”, UMN, 35:3 (1980), 221–224 | MR | Zbl

[40] Skordev G., Gomologicheskie svoistva i nepodvizhnye tochki nepreryvnykh otobrazhenii, Dokt. dis., Sofiya, 1982

[41] Smirnov V. A., Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002

[42] Snapper E., “Cohomology of permutation representations, I, II”, J. Math. and Mech., 13 (1964), 133–161 | MR | Zbl

[43] Snapper E., “Inflation and deflation in all dimensions”, Pacif. J. Math., 15 (1965), 1061–1081 | MR | Zbl

[44] Snapper E., “Duality in the cohomology ring of transitive permutation representations”, J. Math. and Mech., 14 (1965), 323–336 | MR | Zbl

[45] Snapper E., “Spectral sequences and Frobenius groups”, Trans. AMS, 114 (1965), 133–160 | DOI | MR

[46] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, M., 1964 | MR

[47] Wilson D. C., “Open mappings on manifolds and a counterexample to the Whyburn conjecture”, Duke Math. J., 40 (1973), 705–716 | DOI | MR | Zbl

[48] Zarelua A. V., “O prodolzhenii otobrazhenii na rasshireniya s nekotorymi spetsialnymi svoistvami”, Sib. mat. zhurn., 5 (1964), 532–548 | MR | Zbl

[49] Zarelua A. V., “O konechnokratnykh otobrazheniyakh”, Tez. krat. nauch. soobsch. Mezhdunar. mat. kongr. (Moskva, 1966), Mir, M., 1966, 18, Sekts. 8

[50] Zarelua A. V., “O konechnokratnykh otobrazheniyakh”, General topology and its relations to modern analysis and algebra, Proc. Second Prague Topol. Symp. (1966, Prague), 1967, 359 | Zbl

[51] Zarelua A. V., “O konechnokratnykh otobrazheniyakh”, DAN SSSR, 172:4 (1967), 775–778 | MR | Zbl

[52] Zarelua A. V., “Konechnokratnye otobrazheniya topologicheskikh prostranstv i kogomologicheskikh mnogoobrazii”, Sib. mat. zhurn., 10:1 (1969), 64–92 | MR | Zbl

[53] Zarelua A. V., “Kogomologicheskaya struktura konechnokratnykh otobrazhenii”, Tr. Tbil. mat. in-ta, 41, 1972, 100–127 | MR

[54] Zarelua A. V., “O rezolvente nepreryvnogo otobrazheniya i svyazannoi s nei spektralnoi posledovatelnosti”, Tr. Tbil. mat. in-ta, 56, 1977, 99–117 | MR | Zbl

[55] Zarelua A. V., “Ob odnoi spektralnoi posledovatelnosti, svyazannoi s nepreryvnym otobrazheniem”, Mat. zametki, 23:3 (1978), 435–446 | MR | Zbl

[56] Zarelua A. V., “Algebraicheskaya kharakteristika nekotorykh klassov otobrazhenii i sovershennost rasshirenii Vinera garmonicheskikh prostranstv”, Sib. mat. zhurn., 19:6 (1978), 1283–1299 | MR | Zbl

[57] Zarelua A., “Sheaf theory and zero-dimensional mappings”, Applications of sheaves, Proc. Res. Symp. (Durham, 1977), Lect. Notes Math., 753, Springer, Berlin, 1979, 768–769 | MR

[58] Zarelua A. V., “Predely lokalnykh sistem puchkov i nulmernye otobrazheniya”, Tr. MIAN, 154, 1983, 98–112 | MR | Zbl

[59] Zarelua A. V., “Limits of local systems of topological spaces”, Topology, Proc. Intern. Conf. (Leningrad, 1982), Lect. Notes Math., 1960, Springer, Berlin, 1984, 201–212 | MR

[60] Zarelua A., “Homotopical properties of sheaf resolutions”, Rend. Circ. Mat. Palermo. Ser. 2. Suppl., 1988, no. 18, 141–193 | MR | Zbl

[61] Zarelua A. V., “Algebraicheskoe stroenie koltsa funktsii nekotorykh universalnykh prostranstv”, Fund. i prikl. mat., 4:1 (1998), 81–100 | MR | Zbl

[62] Zarelua A. V., “Vneshnie gomologii i kogomologii konechnykh grupp”, Tr. MIAN, 225, 1999, 202–231 | MR | Zbl