Lipschitz Cohomology, Novikov Conjecture, and Expanders
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 59-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We present sufficient conditions for the cohomology of a closed aspherical manifold to be proper Lipschitz in the sense of Connes–Gromov–Moscovici. The conditions are stated in terms of the Stone–Čech compactification of the universal cover of a manifold. We show that these conditions are formally weaker than the sufficient conditions for the Novikov conjecture given by Carlsson and Pedersen. Also, we show that the Cayley graph of the fundamental group of a closed aspherical manifold with proper Lipschitz cohomology cannot contain an expander in the coarse sense. In particular, this rules out a Lipschitz cohomology approach to the Novikov conjecture for recent Gromov examples of exotic groups.
@article{TRSPY_2004_247_a5,
     author = {A. N. Dranishnikov},
     title = {Lipschitz {Cohomology,} {Novikov} {Conjecture,} and {Expanders}},
     journal = {Informatics and Automation},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - Lipschitz Cohomology, Novikov Conjecture, and Expanders
JO  - Informatics and Automation
PY  - 2004
SP  - 59
EP  - 73
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/
LA  - ru
ID  - TRSPY_2004_247_a5
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T Lipschitz Cohomology, Novikov Conjecture, and Expanders
%J Informatics and Automation
%D 2004
%P 59-73
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/
%G ru
%F TRSPY_2004_247_a5
A. N. Dranishnikov. Lipschitz Cohomology, Novikov Conjecture, and Expanders. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 59-73. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/