Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_247_a5, author = {A. N. Dranishnikov}, title = {Lipschitz {Cohomology,} {Novikov} {Conjecture,} and {Expanders}}, journal = {Informatics and Automation}, pages = {59--73}, publisher = {mathdoc}, volume = {247}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/} }
A. N. Dranishnikov. Lipschitz Cohomology, Novikov Conjecture, and Expanders. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 59-73. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a5/
[1] Calder A., Siegel J., “Homotopy and uniform homotopy”, Trans. Amer. Math. Soc., 235 (1978), 245–270 | DOI | MR | Zbl
[2] Carlsson G., Pedersen E., “Čech homology and the Novikov conjectures for $K$- and $L$-theory”, Math. Scand., 82:1 (1998), 5–47 | MR | Zbl
[3] Connes A., Gromov M., Moscovici H., “Group cohomology with Lipschitz control and higher signatures”, Geom. and Funct. Anal., 3:1 (1993), 1–78 | DOI | MR | Zbl
[4] Dranishnikov A. N., “Asimptoticheskaya topologiya”, UMN, 55:6 (2000), 71–116 | MR | Zbl
[5] Dranishnikov A. N., Gong G., Lafforgue V., Yu G., “Uniform embeddings into Hilbert space and a question of Gromov”, Canad. Math. Bull., 45:1 (2002), 60–70 | MR | Zbl
[6] S. Ferry, A. Ranicki, J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, 1, 2, LMS Lect. Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995 | MR
[7] Gromov M., Geometric group theory, V. 2: Asymptotic invariants of infinite groups, LMS Lect. Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[8] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional analysis on the eve of the 21st century, v. 2, Progr. Math., 132, Birkhäuser, Boston, 1996, 1–213 | MR | Zbl
[9] Gromov M., “Spaces and questions”, GAFA 2000. Visions in mathematics–Towards 2000, Pt. 1 (Proc. Meet., Tel Aviv, Israel, 1999), Geom. and Funct. Anal., Birkhäuser, Basel, 2000, 118–161, Spec. vol. | MR | Zbl
[10] Gromov M., “Random walk in random groups”, Geom. and Funct. Anal., 13:1 (2003), 73–146 | DOI | MR | Zbl
[11] Higson N., “Bivariant $K$-theory and the Novikov conjecture”, Geom. and Funct. Anal., 10:3 (2000), 563–581 | DOI | MR | Zbl
[12] Higson N., Lafforgue V., Skandalis G., “Counterexamples to the Baum–Connes conjecture”, Geom. and Funct. Anal., 12:2 (2002), 330–354 | DOI | MR | Zbl
[13] Hurder S., “Exotic index theory and the Novikov conjecture”, Novikov conjectures, index theorems and rigidity, v. 1, LMS Lect. Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 253–276 | MR
[14] Kato T., “Asymptotic Lipschitz cohomology and higher signature”, Geom. and Funct. Anal., 6:2 (1996), 346–369 | DOI | MR | Zbl
[15] Kato T., “Asymptotic Lipschitz maps, combable groups and higher signatures”, Geom. and Funct. Anal., 10:1 (2000), 51–110 | DOI | MR | Zbl
[16] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Birkhäuser, Basel, Boston, Berlin, 1994 | MR | Zbl
[17] Matoušek J., “On embedding expanders into $\ell_p$ spaces”, Israel J. Math., 102 (1997), 189–197 | DOI | MR | Zbl
[18] Milnor J., Stasheff J., Characteristic classes, Princeton Univ. Press, Princeton, NJ, 1974 | MR | Zbl
[19] Roe J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. AMS, 497, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[20] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Reg. Conf. Ser. Math., 90, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[21] Yu G., “The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space”, Invent. Math., 139:1 (2000), 201–240 | DOI | MR | Zbl