On Fractal Peano Curves
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 294-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for a fractal Peano curve $p(t)$ that maps a unit segment onto a unit square, there always exists a pair of points $t,t'$ of the segment that satisfy the inequality $|p(t)-p(t')|^2\ge 5|t-t'|$. As is clear from the classical Peano–Hilbert curve, the number $5$ in this inequality cannot be replaced by a number greater than $6$ (the result of K. Bauman).
@article{TRSPY_2004_247_a22,
     author = {E. V. Shchepin},
     title = {On {Fractal} {Peano} {Curves}},
     journal = {Informatics and Automation},
     pages = {294--303},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a22/}
}
TY  - JOUR
AU  - E. V. Shchepin
TI  - On Fractal Peano Curves
JO  - Informatics and Automation
PY  - 2004
SP  - 294
EP  - 303
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a22/
LA  - ru
ID  - TRSPY_2004_247_a22
ER  - 
%0 Journal Article
%A E. V. Shchepin
%T On Fractal Peano Curves
%J Informatics and Automation
%D 2004
%P 294-303
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a22/
%G ru
%F TRSPY_2004_247_a22
E. V. Shchepin. On Fractal Peano Curves. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 294-303. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a22/

[1] Schepin E. V., “Povyshayuschie razmernost otobrazheniya i nepreryvnaya peredacha informatsii”, Voprosy chistoi i prikladnoi matematiki, v. 1, Priok. kn. izd-vo, Tula, 1987, 148–155

[2] Bauman K. E., Koeffitsient rastyazheniya krivoi Peano–Gilberta, , 2004 http://www.mi.ras.ru/~scepin/rast6.pdf

[3] Schepin E. V., Bauman K. E., “O krivykh Peano fraktalnogo roda 9”, Modelirovanie i analiz dannykh, Tr. fak. inform. tekhnol. MGPPU., no. 1, RUSAVIA, M., 2004, 79–89