On the Coincidence Points of Mappings of the Torus into a Surface
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 15-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary pair of continuous maps of the $2$-torus $T$ into an arbitrary surface $S$, the Wecken property for the coincidence problem is proved. This means that there exist homotopic maps such that each Nielsen class of coincidence points consists of a single point and has a nonvanishing index. Moreover, every nonvanishing index is equal to $\pm 1$, as well as every nonvanishing semi-index of Jezierski is equal to $1$ if $S$ is neither the sphere nor the projective plane.
@article{TRSPY_2004_247_a2,
     author = {S. A. Bogatyi and E. A. Kudryavtseva and H. Zieschang},
     title = {On the {Coincidence} {Points} of {Mappings} of the {Torus} into a {Surface}},
     journal = {Informatics and Automation},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - E. A. Kudryavtseva
AU  - H. Zieschang
TI  - On the Coincidence Points of Mappings of the Torus into a Surface
JO  - Informatics and Automation
PY  - 2004
SP  - 15
EP  - 34
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/
LA  - ru
ID  - TRSPY_2004_247_a2
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A E. A. Kudryavtseva
%A H. Zieschang
%T On the Coincidence Points of Mappings of the Torus into a Surface
%J Informatics and Automation
%D 2004
%P 15-34
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/
%G ru
%F TRSPY_2004_247_a2
S. A. Bogatyi; E. A. Kudryavtseva; H. Zieschang. On the Coincidence Points of Mappings of the Torus into a Surface. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 15-34. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/

[1] Bogatyi S. A., Gonsalves D. L., Kudryavtseva E. A., Tsishang Kh., “Minimalnoe chislo proobrazov pri otobrazheniyakh mezhdu poverkhnostyami”, Mat. zametki, 75:1 (2004), 13–19 | MR | Zbl

[2] Bogatyi S., Gonçalves D. L., Kudryavtseva E., Zieschang H., “On the Wecken property for the root problem of mappings between surfaces”, Moscow Math. J., 3:4 (2003), 1223–1245 | MR | Zbl

[3] Bogatyi S. A., Kudryavtseva E. A., Tsishang Kh., O peresecheniyakh zamknutykh krivykh na poverkhnostyakh, Preprint, MGU, M., 2004 | MR

[4] Brooks R. B. S., Brown R. F., Pak J., Taylor D. H., “Nielsen numbers of maps of tori”, Proc. Amer. Math. Soc., 52 (1975), 398–400 | DOI | MR | Zbl

[5] Dobrenko R., Jezierski J., “The coincidence Nielsen number on nonorientable manifolds”, Rocky Mount. J. Math., 23 (1993), 67–87 | DOI | MR

[6] Epstein D. B. A., “The degree of a map”, Proc. London Math. Soc. Ser. 3, 16 (1966), 369–383 | DOI | MR | Zbl

[7] Gonçalves D. L., “Coincidence of maps from a complex $K$ into a manifold”, Topology and Appl., 92 (1999), 63–77 | DOI | MR | Zbl

[8] Gonçalves D. L., Jezierski J., “Lefschetz coincidence formula on non-orientable manifolds”, Fund. Math., 153 (1997), 1–23 | MR | Zbl

[9] Gonçalves D. L., Kelly M. R., Coincidence properties for maps from the torus to the Klein bottle, Preprint, São Paulo, 2002

[10] Gonçalves D. L., Kudryavtseva E. A., Zieschang H., “Roots of mappings on nonorientable surfaces and equations in free groups”, Manuscr. Math., 107:3 (2002), 311–341 | DOI | MR | Zbl

[11] Hopf H., “Zur Topologie der Abbildungen von Mannigfaltigkeiten, II”, Math. Ann., 102 (1930), 562–623 | DOI | MR

[12] Ivanov N. V., “Chisla Nilsena otobrazhenii poverkhnostei”, Zap. nauch. sem. LOMI, 122, 1982, 56–65 | MR | Zbl

[13] Jezierski J., “The semi-index product formula”, Fund. Math., 140 (1992), 99–120 | MR | Zbl

[14] Jezierski J., “The coincidence Nielsen number for maps into the real projective space”, Fund. Math., 140 (1992), 121–136 | MR | Zbl

[15] Jezierski J., “The least number of coincidence points on surfaces”, J. Austral. Math. Soc. A., 58 (1995), 27–38 | DOI | MR | Zbl

[16] Jiang B., “Fixed points of surface homeomorphisms”, Bull. Amer. Math. Soc., 5 (1981), 176–178 | DOI | MR | Zbl

[17] Jiang B., “Fixed points and braids”, Invent. Math., 75 (1984), 69–74 | DOI | MR | Zbl

[18] Jiang B., “Fixed points and braids, II”, Math. Ann., 272 (1985), 249–256 | DOI | MR | Zbl

[19] Kneser H., “Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen”, Math. Ann., 103 (1930), 347–358 | DOI | MR | Zbl

[20] Olum P., “Mappings of manifolds and the notion of degree”, Ann. Math., 58 (1953), 458–480 | DOI | MR | Zbl

[21] Schirmer H., “Mindestzahlen von Koinzidenzpunkten”, J. Reine und Angew. Math., 194 (1955), 659–671 | MR

[22] Skora R., “The degree of a map between surfaces”, Math. Ann., 276 (1987), 415–423 | DOI | MR | Zbl

[23] Stöcker R., Zieschang H., Algebraische Topologie: Eine Einführung, 2. Aufl., Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1994 | MR | Zbl

[24] Vendrúscolo D., Índice de classes de coincidências em superfícies, PhD Thes., Univ. São Paulo, 2002

[25] Vick J. W., Homology theory. An introduction to algebraic topology, Pure and Appl. Math., 53, Acad. Press, New York, London, 1973 | MR | Zbl

[26] Tsishang Kh., Fogt E., Koldevai Kh.-D., Poverkhnosti i razryvnye gruppy ; ed. O. Ya. Viro, Nauka, M., 1988 | Zbl | MR