On the Coincidence Points of Mappings of the Torus into a Surface
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 15-34

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary pair of continuous maps of the $2$-torus $T$ into an arbitrary surface $S$, the Wecken property for the coincidence problem is proved. This means that there exist homotopic maps such that each Nielsen class of coincidence points consists of a single point and has a nonvanishing index. Moreover, every nonvanishing index is equal to $\pm 1$, as well as every nonvanishing semi-index of Jezierski is equal to $1$ if $S$ is neither the sphere nor the projective plane.
@article{TRSPY_2004_247_a2,
     author = {S. A. Bogatyi and E. A. Kudryavtseva and H. Zieschang},
     title = {On the {Coincidence} {Points} of {Mappings} of the {Torus} into a {Surface}},
     journal = {Informatics and Automation},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - E. A. Kudryavtseva
AU  - H. Zieschang
TI  - On the Coincidence Points of Mappings of the Torus into a Surface
JO  - Informatics and Automation
PY  - 2004
SP  - 15
EP  - 34
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/
LA  - ru
ID  - TRSPY_2004_247_a2
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A E. A. Kudryavtseva
%A H. Zieschang
%T On the Coincidence Points of Mappings of the Torus into a Surface
%J Informatics and Automation
%D 2004
%P 15-34
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/
%G ru
%F TRSPY_2004_247_a2
S. A. Bogatyi; E. A. Kudryavtseva; H. Zieschang. On the Coincidence Points of Mappings of the Torus into a Surface. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 15-34. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a2/