Extended Hyperbolic Surfaces in~$R^3$
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 267-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, I will describe the construction of several surfaces whose intrinsic geometry is hyperbolic geometry, in the same sense that spherical geometry is the geometry of the standard sphere in Euclidean 3-space. I will prove that the intrinsic geometry of these surfaces is, in fact, (a close approximation of) hyperbolic geometry. I will share how I (and others) have used these surfaces to increase our own (and our students') experiential understanding of hyperbolic geometry. (How to find hyperbolic geodesics? What are horocycles? Does a hyperbolic plane have a radius? Where does the area formula $\pi r^2$ fit in hyperbolic geometry?).
@article{TRSPY_2004_247_a19,
     author = {D. W. Henderson},
     title = {Extended {Hyperbolic} {Surfaces} in~$R^3$},
     journal = {Informatics and Automation},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a19/}
}
TY  - JOUR
AU  - D. W. Henderson
TI  - Extended Hyperbolic Surfaces in~$R^3$
JO  - Informatics and Automation
PY  - 2004
SP  - 267
EP  - 279
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a19/
LA  - en
ID  - TRSPY_2004_247_a19
ER  - 
%0 Journal Article
%A D. W. Henderson
%T Extended Hyperbolic Surfaces in~$R^3$
%J Informatics and Automation
%D 2004
%P 267-279
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a19/
%G en
%F TRSPY_2004_247_a19
D. W. Henderson. Extended Hyperbolic Surfaces in~$R^3$. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 267-279. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a19/

[1] Coxeter H. S. M., Greitzer S. L., Geometry revisited, New Math. Library, 19, L. W. Singer, New York, 1967

[2] Efimov N. V., “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Mat. sb., 64:2 (1964), 286–320 | MR | Zbl

[3] Giacardi L., “Scientific research and teaching problems in Beltrami's letters to Hoüel”, Using history to teach mathematics: An international perspective, MAA Notes, 51, ed. V. Katz, DC: Math. Assoc. America, Washington, 2000, 213–223 | MR

[4] Henderson D. W., Differential geometry: A geometric introduction, Prentice Hall, Upper Saddle River, NJ, 1998 | Zbl

[5] Henderson D. W., Taimina D., Experiencing geometry. 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2005

[6] Henderson D. W., Taimina D., “Crocheting the hyperbolic plane”, Math. Intell., 23:2 (2001), 17–28 | DOI | MR | Zbl

[7] Hilbert D., “Über Flächen von konstanten gausscher Krümmung”, Trans. Amer. Math. Soc., 2 (1901), 86–99 | DOI | MR

[8] Hilbert D., Cohn-Vossen S., Geometry and the imagination, Chelsea Publ., New York, 1983 | MR

[9] Kuiper N., “On $C^1$-isometric embeddings, II”, Ned. Akad. Wetensch. Proc. A., 58 (1955), 683–689 | Zbl

[10] Milnor T., “Efimov's theorem about complete immersed surfaces of negative curvature”, Adv. Math., 8 (1972), 474–543 | DOI | MR | Zbl

[11] Osserman R., Poetry of the Universe: A mathematical exploration of the cosmos, Anchor Books, New York, 1995

[12] Spivak M., A comprehensive introduction to differential geometry, 3, Publish or Perish, Wilmington, DE, 1979

[13] Thurston W., Three-dimensional geometry and topology, v. 1, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl