Lusternik--Schnirelman Theory and Dynamics. II
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 252-266

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how the methods of homotopy theory can be used in dynamics to study the topology of a chain recurrent set. More specifically, we introduce new homotopy invariants $\mathrm {cat}^1(X,\xi)$ and $\mathrm {cat}^1_{\mathrm s}(X,\xi)$ that depend on a finite polyhedron $X$ and a real cohomology class $\xi \in H^1(X;\mathbb R)$ and are modifications of the invariants introduced earlier by the first author. We prove that, under certain conditions, $\mathrm {cat}_{\mathrm s}^1(X,\xi)$ provides a lower bound for the Lusternik–Schnirelman category of the chain recurrent set $R_\xi$ of a given flow. The approach of the present paper applies to a wider class of flows compared with the earlier approach; in particular, it allows one to avoid certain difficulties when checking assumptions.
@article{TRSPY_2004_247_a18,
     author = {M. Farber and T. Kappeler},
     title = {Lusternik--Schnirelman {Theory} and {Dynamics.} {II}},
     journal = {Informatics and Automation},
     pages = {252--266},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a18/}
}
TY  - JOUR
AU  - M. Farber
AU  - T. Kappeler
TI  - Lusternik--Schnirelman Theory and Dynamics. II
JO  - Informatics and Automation
PY  - 2004
SP  - 252
EP  - 266
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a18/
LA  - ru
ID  - TRSPY_2004_247_a18
ER  - 
%0 Journal Article
%A M. Farber
%A T. Kappeler
%T Lusternik--Schnirelman Theory and Dynamics. II
%J Informatics and Automation
%D 2004
%P 252-266
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a18/
%G ru
%F TRSPY_2004_247_a18
M. Farber; T. Kappeler. Lusternik--Schnirelman Theory and Dynamics. II. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 252-266. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a18/