Could the Poincar\'e Conjecture Be False?
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 247-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Two conjectures are stated which imply that the Poincaré hypothesis (asserting that any simply connected closed compact $3$-manifold is the $3$-sphere) is false. The first one claims that, for certain classes of finitely presented groups, the triviality problem is algorithmically undecidable, and the second one claims that certain embeddings of two-dimensional polyhedra in $3$-manifolds can effectively be constructed.
@article{TRSPY_2004_247_a17,
     author = {A. B. Sosinskii},
     title = {Could the {Poincar\'e} {Conjecture} {Be} {False?}},
     journal = {Informatics and Automation},
     pages = {247--251},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a17/}
}
TY  - JOUR
AU  - A. B. Sosinskii
TI  - Could the Poincar\'e Conjecture Be False?
JO  - Informatics and Automation
PY  - 2004
SP  - 247
EP  - 251
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a17/
LA  - ru
ID  - TRSPY_2004_247_a17
ER  - 
%0 Journal Article
%A A. B. Sosinskii
%T Could the Poincar\'e Conjecture Be False?
%J Informatics and Automation
%D 2004
%P 247-251
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a17/
%G ru
%F TRSPY_2004_247_a17
A. B. Sosinskii. Could the Poincar\'e Conjecture Be False?. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 247-251. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a17/