On Metric Completeness and Order Completeness
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 228-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

A positive answer to the question of whether there exists a metric on the lattice of continuous functions that generates uniform convergence and is such that the metric completion is simultaneously the order completion is given. Two interpretations of the obtained metric lattice are suggested.
@article{TRSPY_2004_247_a15,
     author = {S. N. Samborskii},
     title = {On {Metric} {Completeness} and {Order} {Completeness}},
     journal = {Informatics and Automation},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a15/}
}
TY  - JOUR
AU  - S. N. Samborskii
TI  - On Metric Completeness and Order Completeness
JO  - Informatics and Automation
PY  - 2004
SP  - 228
EP  - 236
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a15/
LA  - ru
ID  - TRSPY_2004_247_a15
ER  - 
%0 Journal Article
%A S. N. Samborskii
%T On Metric Completeness and Order Completeness
%J Informatics and Automation
%D 2004
%P 228-236
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a15/
%G ru
%F TRSPY_2004_247_a15
S. N. Samborskii. On Metric Completeness and Order Completeness. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 228-236. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a15/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[2] Neubrunn T., “Quasi-continuity”, Real Anal. Exchange, 14:2 (1989), 259–306 | MR | Zbl

[3] Samborskii S. N., “O rasshireniyakh differentsialnykh operatorov i negladkikh resheniyakh differentsialnykh uravnenii”, Kibernetika i sistemnyi analiz, 2002, no. 3, 163–180 | MR | Zbl