A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 10-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of realizing a mapping $f\colon S^3 \to S^3$ of the $3$-dimensional sphere into itself in the ambient space $\mathbb R^6$ is reformulated in elementary terms. It is proved that, for $n=1,3,7$, there exists an equivariant mapping $F\colon S^n\times S^n\to S^n\times S^n$ such that a formal obstruction to its realization in $\mathbb R^{2n}$ is nontrivial.
@article{TRSPY_2004_247_a1,
     author = {P. M. Akhmet'ev},
     title = {A~Remark on the {Realization} of {Mappings} of the {3-Dimensional} {Sphere} into {Itself}},
     journal = {Informatics and Automation},
     pages = {10--14},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
JO  - Informatics and Automation
PY  - 2004
SP  - 10
EP  - 14
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a1/
LA  - ru
ID  - TRSPY_2004_247_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
%J Informatics and Automation
%D 2004
%P 10-14
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a1/
%G ru
%F TRSPY_2004_247_a1
P. M. Akhmet'ev. A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself. Informatics and Automation, Geometric topology and set theory, Tome 247 (2004), pp. 10-14. http://geodesic.mathdoc.fr/item/TRSPY_2004_247_a1/