Mori Structures on a~Fano Threefold of Index~2 and Degree~1
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 116-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Mori structures on a nonsingular Fano threefold of index 2 and degree 1 are represented precisely by this Fano variety itself and by fibrations into del Pezzo surfaces of degree 1 that emerge from the blowups of curves of arithmetic genus 1 and degree 1. In particular, such a Fano variety is nonrational and all its birational automorphisms are regular.
@article{TRSPY_2004_246_a7,
     author = {M. M. Grinenko},
     title = {Mori {Structures} on {a~Fano} {Threefold} of {Index~2} and {Degree~1}},
     journal = {Informatics and Automation},
     pages = {116--141},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a7/}
}
TY  - JOUR
AU  - M. M. Grinenko
TI  - Mori Structures on a~Fano Threefold of Index~2 and Degree~1
JO  - Informatics and Automation
PY  - 2004
SP  - 116
EP  - 141
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a7/
LA  - ru
ID  - TRSPY_2004_246_a7
ER  - 
%0 Journal Article
%A M. M. Grinenko
%T Mori Structures on a~Fano Threefold of Index~2 and Degree~1
%J Informatics and Automation
%D 2004
%P 116-141
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a7/
%G ru
%F TRSPY_2004_246_a7
M. M. Grinenko. Mori Structures on a~Fano Threefold of Index~2 and Degree~1. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 116-141. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a7/

[1] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepenei 1 i 2”, Mat. sb., 191:5 (2000), 17–38 | MR | Zbl

[2] Grinenko M. M., “O rassloeniyakh na poverkhnosti del Petstso”, Mat. zametki, 69:4 (2001), 550–565 | MR | Zbl

[3] Grinenko M. M., “O dvoinom konuse nad poverkhnostyu Veroneze”, Izv. RAN. Ser. mat., 67:3 (2003), 5–22 | MR | Zbl

[4] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 12, VINITI, M., 1979, 159–236 | MR

[5] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. mat., 62:1 (1998), 123–164 | MR | Zbl

[6] Fedorov I. Yu., “Divizorialnye styagivaniya v trekhmernye cDv osobennosti”, Mat. sb., 193:7 (2002), 149–160 | MR | Zbl

[7] Khashin S. I., “Biratsionalnye avtomorfizmy dvoinogo konusa Veroneze razmernosti tri”, Vestn. MGU. Matematika. Mekhanika, 1984, no. 1, 13–16 | MR | Zbl

[8] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Alg. Geom., 4 (1995), 223–254 | MR | Zbl

[9] Kawakita M., “Divisorial contractions in dimension 3 which contract divisors to smooth points”, Invent. Math., 145:1 (2001), 105–119 | DOI | MR | Zbl

[10] Kawakita M., “Divisorial contractions in dimension 3 which contract divisors to compound $A_1$ points”, Compos. Math., 133:1 (2002), 95–116 | DOI | MR | Zbl

[11] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, LMS Lect. Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl