Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_246_a3, author = {A. I. Bondal}, title = {Symplectic {Groupoids} {Related} to {Poisson--Lie} {Groups}}, journal = {Informatics and Automation}, pages = {43--63}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a3/} }
A. I. Bondal. Symplectic Groupoids Related to Poisson--Lie Groups. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 43-63. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a3/
[1] Alexeev A. Yu., Malkin A. Z., “Symplectic structures associated to Lie–Poisson groups”, Commun. Math. Phys., 162 (1994), 147–173 | DOI | MR
[2] Bondal A. I., “Simplekticheskii gruppoid treugolnykh bilineinykh form i gruppa kos”, Izv. RAN. Ser. mat., 68:4 (2004), 19–74 | MR
[3] Bredon G. E., Introduction to compact transformation groups, Acad. Press, New York, London, 1972 | MR | Zbl
[4] Coste A., Dazord P., Weinstein A., “Groupoides symplectiques”, Publ. Dép. Math. Univ. Lyon. Nouv. Sér. A., 2 (1987), 1–62 | MR | Zbl
[5] De Concini C., Procesi C., “Quantum groups”, D-modules, representation theory, and quantum groups, Lect. Notes Math., 1565, ed. G. Zampieri, Springer, Berlin, 1993, 31–140 | MR | Zbl
[6] Drinfeld V. G., “Gamiltonovy struktury na gruppakh Li, bialgebry Li i geometricheskii smysl klassicheskikh uravnenii Yanga–Bakstera”, DAN SSSR, 268:2 (1983), 285–287 | MR
[7] Drinfeld V. G., “Quantum groups”, Proc. Intern. Congr. Math. (Berkeley, Calif., USA, 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[8] Karasev M. V., “Analogi ob'ektov teorii grupp Li dlya nelineinykh skobok Puassona”, Izv. AN SSSR. Ser. mat., 50:3 (1986), 508–538 | MR | Zbl
[9] Katsylo P. I., “Ratsionalnost prostranstv modulei giperellipticheskikh krivykh”, Izv. AN SSSR. Ser. mat., 48:4 (1984), 705–710 | MR | Zbl
[10] Lu J.-H., Weinstein A., “Groupoides symplectic doubles des groupes de Lie–Poisson”, C. R. Acad. Sci. Paris. Ser. 1, 309 (1989), 951–954 | MR | Zbl
[11] Luna D., “Slices etales”, Bull. Soc. Math. France. Mém., 33 (1973), 81–105 | MR | Zbl
[12] Ping Xu., Dirac submanifolds and Poisson involution, , 2001 arXiv: /math.SG/0110326 | MR
[13] Semenov-Tian-Shansky M. A., “Dressing transformations and Poisson group actions”, Publ. RIMS. Kyoto Univ., 21:6 (1985), 1237–1260 | DOI | MR
[14] Ugaglia M., “On a Poisson structure on the space of Stokes matrices”, Intern. Math. Res. Not., 1999, no. 9, 473–493 | DOI | MR | Zbl
[15] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc., 16 (1987), 101–104 | DOI | MR | Zbl
[16] Weinstein A., “The symplectic ‘category’”, Differential geometric methods in mathematical physics, Lect. Notes Math., 905, Springer, Berlin, 1982, 45–51 | MR
[17] Zakrzewski S., “Quantum and classical pseudogroups. Pt. 2: Differential and symplectic pseudogroups”, Commun. Math. Phys., 134 (1990), 371–395 | DOI | MR | Zbl
[18] Zakrzewski S., “On relations between Poisson and quantum groups”, Quantum groups, Lect. Notes Math., 1510, Springer, Berlin, 1992, 326–334 | MR