Nonrational Complete Intersections
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonrationality of a general complete intersection $\bigcap_{i=1}^kF_i\subset{\mathbb P}^M$, where $F_i$ is a hypersurface of degree $d_i$, is proved under the condition that equality $\sum_{i=1}^kd_i=M$ holds and $\exists\,d_j\notin\{2,3,5\}$.
@article{TRSPY_2004_246_a21,
     author = {I. A. Cheltsov and L. Votslav},
     title = {Nonrational {Complete} {Intersections}},
     journal = {Informatics and Automation},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - L. Votslav
TI  - Nonrational Complete Intersections
JO  - Informatics and Automation
PY  - 2004
SP  - 316
EP  - 320
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/
LA  - ru
ID  - TRSPY_2004_246_a21
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A L. Votslav
%T Nonrational Complete Intersections
%J Informatics and Automation
%D 2004
%P 316-320
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/
%G ru
%F TRSPY_2004_246_a21
I. A. Cheltsov; L. Votslav. Nonrational Complete Intersections. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/