Nonrational Complete Intersections
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonrationality of a general complete intersection $\bigcap_{i=1}^kF_i\subset{\mathbb P}^M$, where $F_i$ is a hypersurface of degree $d_i$, is proved under the condition that equality $\sum_{i=1}^kd_i=M$ holds and $\exists\,d_j\notin\{2,3,5\}$.
@article{TRSPY_2004_246_a21,
author = {I. A. Cheltsov and L. Votslav},
title = {Nonrational {Complete} {Intersections}},
journal = {Informatics and Automation},
pages = {316--320},
publisher = {mathdoc},
volume = {246},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/}
}
I. A. Cheltsov; L. Votslav. Nonrational Complete Intersections. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a21/