Coherent State Transforms and Theta Functions
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 297-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some aspects of the relations between analytic and geometric properties of theta functions, coherent state transforms for Lie groups, and geometric quantization are reviewed. In this context, the classical theta functions on abelian varieties and nonabelian theta functions for vector bundles on elliptic curves are studied. Some applications of these ideas to rank-2 nonabelian theta functions for genus $g\ge 2$ are also discussed.
@article{TRSPY_2004_246_a20,
     author = {C. Florentino and J. Mour\~ao and J. P. Nunes},
     title = {Coherent {State} {Transforms} and {Theta} {Functions}},
     journal = {Informatics and Automation},
     pages = {297--315},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a20/}
}
TY  - JOUR
AU  - C. Florentino
AU  - J. Mourão
AU  - J. P. Nunes
TI  - Coherent State Transforms and Theta Functions
JO  - Informatics and Automation
PY  - 2004
SP  - 297
EP  - 315
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a20/
LA  - en
ID  - TRSPY_2004_246_a20
ER  - 
%0 Journal Article
%A C. Florentino
%A J. Mourão
%A J. P. Nunes
%T Coherent State Transforms and Theta Functions
%J Informatics and Automation
%D 2004
%P 297-315
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a20/
%G en
%F TRSPY_2004_246_a20
C. Florentino; J. Mourão; J. P. Nunes. Coherent State Transforms and Theta Functions. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 297-315. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a20/

[1] Atiyah M., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London. A., 308 (1983), 523–615 | DOI | MR | Zbl

[2] Axelrod S., Della Pietra S., Witten E., “Geometric quantization of Chern–Simons gauge theory”, J. Diff. Geom., 33 (1991), 787–902 | MR | Zbl

[3] Baez J., “Spin networks in gauge theory”, Adv. Math., 117 (1996), 253–272 | DOI | MR | Zbl

[4] Beauville A., Vector bundles on curves and generalized theta functions: recent results and open problems, , 1994 arXiv: /alg-geom/9404001 | MR

[5] Beauville A., “Conformal blocks, fusion rings and the Verlinde formula”, Proc. Hirzebruch 65 Conf. on Algebraic Geometry, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 75–96 | MR | Zbl

[6] Beauville A., Laszlo Y., “Conformal blocks and generalized theta functions”, Commun. Math. Phys., 164 (1994), 385–419 | DOI | MR | Zbl

[7] Bernard D., “On the Wess–Zumino–Witten model on the torus”, Nucl. Phys. B., 303 (1988), 77–93 | DOI | MR

[8] Bernard D., “On the Wess–Zumino–Witten models on Riemann surfaces”, Nucl. Phys. B., 309 (1988), 145–174 | DOI | MR

[9] Bratholdt S., Cooper D., “On the topology of the character variety of a free group”, Rend. Ist. Mat. Univ. Trieste, 32:Supp. 1 (2001), 45–53 | MR | Zbl

[10] Drezet J., Narasimhan M. S., “Groupe de Picard des varietés de modules de fibrés semi-stables sur les courbes algébriques”, Invent. Math., 97 (1989), 53–94 | DOI | MR | Zbl

[11] Elitzur S., Moore G., Schwimmer A., Seiberg N., “Remarks on the canonical quantization of the Chern–Simons–Witten theory”, Nucl. Phys. B., 326 (1989), 108–134 | DOI | MR

[12] Faltings G., “Stable $G$-bundles and projective connections”, J. Alg. Geom., 2 (1993), 507–568 | MR | Zbl

[13] Florentino C., “Schottky uniformization and vector bundles over Riemann surfaces”, Manuscr. Math., 105 (2001), 68–83 | DOI | MR

[14] Florentino C., Mourão J., Nunes J. P., “Coherent state transforms and abelian varieties”, J. Funct. Anal., 192 (2002), 410–424 | DOI | MR | Zbl

[15] Florentino C., Mourão J., Nunes J. P., “Coherent state transforms and vector bundles on elliptic curves”, J. Funct. Anal., 204 (2003), 355–398 | DOI | MR | Zbl

[16] Florentino C., Mourão J., Nunes J. P., Tyurin A., Analytical aspects on non-abelian theta functions, In preparation

[17] Fogarty J., Kirwan F., Mumford D., Geometric invariant theory, 3rd ed., Springer, New York, 1994 | MR | Zbl

[18] Friedman R., Morgan J., Holomorphic principal bundles over elliptic curves, , 1998 arXiv: /math.AG/9811130 | MR

[19] Friedman R., Morgan J., Witten E., “Principal G-bundles over elliptic curves”, Math. Res. Lett., 5 (1998), 97–118 | MR | Zbl

[20] Gawȩdzki K., “Lectures on conformal field theory”, Quantum fields and strings: A course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, 727–805 | MR | Zbl

[21] Gawȩdzki K., Conformal field theory: a case study, , 1999 arXiv: /hep-th/9904145

[22] Hall B. C., “The Segal–Bargmann coherent state transform for compact Lie groups”, J. Funct. Anal., 122 (1994), 103–151 | DOI | MR | Zbl

[23] Hall B. C., “Holomorphic methods in mathematical physics”, Contemp. Math., 260 (2000), 1–59 | MR | Zbl

[24] Hall B. C., “Quantum mechanics in phase space”, Contemp. Math., 214 (1998), 47–62 | MR | Zbl

[25] Hall B. C., Geometric quantization and the generalized Segal–Bargmann transform for Lie groups of compact type, , 2000 arXiv: /quant-phys/0012105 | MR

[26] Hall B. C., “Harmonic analysis with respect to the heat kernel measure”, Bull. Amer. Math. Soc., 38 (2001), 43–78 | DOI | MR | Zbl

[27] Hitchin N., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl

[28] Hochschild G., The structure of Lie groups, Holden-Day, San Francisco, London, Amsterdam, 1965 | MR | Zbl

[29] Jeffrey L., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[30] Kac V., Infinite dimensional Lie algebras. 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | MR

[31] Kempf G., Complex abelian varieties and theta functions, Springer, Berlin, 1991 | MR | Zbl

[32] Knizhnik V., Zamolodchikov A., “Current algebras and the Wess–Zumino–Witten model in two dimensions”, Nucl. Phys. B., 247 (1984), 83–103 | DOI | MR | Zbl

[33] Looijenga E., “Root systems and elliptic curves”, Invent. Math., 38 (1976), 17–32 | DOI | MR | Zbl

[34] Lange H., Birkenhake C., Complex abelian varieties, Springer, Berlin, 1992 | MR

[35] Narasimhan M. S., Geometric invariant theory and moduli problems, Unpubl. Lect. Notes

[36] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. Math. Ser. 2, 82 (1965), 540–567 | DOI | MR | Zbl

[37] Narasimhan M. S., Ramanan S., “Moduli of vector bundles on a compact Riemann surface”, Ann. Math. Ser. 2, 89 (1969), 14–51 | DOI | MR | Zbl

[38] Sniaticky J., Geometric quantization and quantum mechanics, Springer, Berlin, 1987

[39] Sorger C., “La formule de Verlinde”, Sem. Bourbaki 1994/95, Astérisque, 237, Soc. Math. France, Paris, 1996, 87–114, Exp. 794 | MR | Zbl

[40] Thiemann T., “The inverse loop transform”, J. Math. Phys., 39 (1998), 1236–1248 | DOI | MR | Zbl

[41] Tyurin A., Quantization, classical and quantum field theory and theta functions, CRM Monogr. Ser., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[42] Tyurin A., Quantization and theta-functions, , 1999 arXiv: /math.AG/9904046 | MR

[43] Tyurin A. N., “O bazisakh Bora–Zommerfelda”, Izv. RAN. Ser. mat., 64:5 (2000), 163–196 | MR | Zbl

[44] Tyurin A., Complexification of Bohr–Sommerfeld Conditions, , 1999 arXiv: /math.AG/ 9909094

[45] Verlinde E., “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B., 300 (1988), 360–376 | DOI | MR | Zbl

[46] Weitsman J., “Quantization via real polarization of the moduli space of flat connections and Chern–Simons gauge theory in genus one”, Commun. Math. Phys., 137 (1991), 175–190 | DOI | MR | Zbl

[47] Witten E., “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl