McKay Equivalence for Symplectic Resolutions of Quotient Singularities
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 20-42

Voir la notice de l'article provenant de la source Math-Net.Ru

An arbitrary crepant resolution $X$ of the quotient $V/G$ of a symplectic vector space $V$ by the action of a finite subgroup $G\subset\mathrm{Sp}(V)$ is considered. It is proved that the derived category of coherent sheaves on $X$ is equivalent to the derived category of $G$-equivariant coherent sheaves on $V$.
@article{TRSPY_2004_246_a2,
     author = {R. V. Bezrukavnikov and D. B. Kaledin},
     title = {McKay {Equivalence} for {Symplectic} {Resolutions} of {Quotient} {Singularities}},
     journal = {Informatics and Automation},
     pages = {20--42},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/}
}
TY  - JOUR
AU  - R. V. Bezrukavnikov
AU  - D. B. Kaledin
TI  - McKay Equivalence for Symplectic Resolutions of Quotient Singularities
JO  - Informatics and Automation
PY  - 2004
SP  - 20
EP  - 42
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/
LA  - ru
ID  - TRSPY_2004_246_a2
ER  - 
%0 Journal Article
%A R. V. Bezrukavnikov
%A D. B. Kaledin
%T McKay Equivalence for Symplectic Resolutions of Quotient Singularities
%J Informatics and Automation
%D 2004
%P 20-42
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/
%G ru
%F TRSPY_2004_246_a2
R. V. Bezrukavnikov; D. B. Kaledin. McKay Equivalence for Symplectic Resolutions of Quotient Singularities. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 20-42. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/