McKay Equivalence for Symplectic Resolutions of Quotient Singularities
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 20-42
Voir la notice de l'article provenant de la source Math-Net.Ru
An arbitrary crepant resolution $X$ of the quotient $V/G$ of a symplectic vector space $V$ by the action of a finite subgroup $G\subset\mathrm{Sp}(V)$ is considered. It is proved that the derived category of coherent sheaves on $X$ is equivalent to the derived category of $G$-equivariant coherent sheaves on $V$.
@article{TRSPY_2004_246_a2,
author = {R. V. Bezrukavnikov and D. B. Kaledin},
title = {McKay {Equivalence} for {Symplectic} {Resolutions} of {Quotient} {Singularities}},
journal = {Informatics and Automation},
pages = {20--42},
publisher = {mathdoc},
volume = {246},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/}
}
TY - JOUR AU - R. V. Bezrukavnikov AU - D. B. Kaledin TI - McKay Equivalence for Symplectic Resolutions of Quotient Singularities JO - Informatics and Automation PY - 2004 SP - 20 EP - 42 VL - 246 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/ LA - ru ID - TRSPY_2004_246_a2 ER -
R. V. Bezrukavnikov; D. B. Kaledin. McKay Equivalence for Symplectic Resolutions of Quotient Singularities. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 20-42. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a2/