Floer Homology, Nielsen Theory, and Symplectic Zeta Functions
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 283-296
Voir la notice de l'article provenant de la source Math-Net.Ru
A connection between symplectic Floer homology for surfaces and the Nielsen fixed point theory is described. New zeta functions and an asymptotic invariant of symplectic origin are defined. It is shown that special values of symplectic zeta functions are Reidemeister torsions.
@article{TRSPY_2004_246_a19,
author = {A. L. Fel'shtyn},
title = {Floer {Homology,} {Nielsen} {Theory,} and {Symplectic} {Zeta} {Functions}},
journal = {Informatics and Automation},
pages = {283--296},
publisher = {mathdoc},
volume = {246},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a19/}
}
A. L. Fel'shtyn. Floer Homology, Nielsen Theory, and Symplectic Zeta Functions. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 283-296. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a19/