On the Variety of Complete Punctual Flags of Length 5 in Dimension 2
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 277-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the variety $X_d$ of complete punctual flags of length $d$ in dimension 2 defined as the closure of the variety of complete curvilinear zero-dimensional subschemes of length $\le d$ with support at the fixed point on a smooth algebraic surface; this closure is taken in the direct product of punctual Hilbert schemes. It is known that, for $2\le d\le 4$, the variety $X_d$ is smooth and coincides with the projectivization of the rank-2 vector bundle over $X_{d-1}$, where the bundle is described as the corresponding $\mathcal Ext$-sheaf. A similar bundle $\mathcal E$ is also defined over $X_4$. However, its projectivization $\mathbf P(\mathcal E)$ is birationally isomorphic but is not isomorphic to $X_5$. M. Gulbrandsen showed that $X_5$ has a curve of singularities. In the present article, we give a precise description of a minimal birational transformation of $X_5$ into $\mathbf P(\mathcal E)$ and interpret this transformation and the singularities of $X_5$ in terms of $\mathcal Ext$-sheaves.
@article{TRSPY_2004_246_a18,
     author = {A. S. Tikhomirov and S. A. Tikhomirov},
     title = {On the {Variety} of {Complete} {Punctual} {Flags} of {Length} 5 in {Dimension} 2},
     journal = {Informatics and Automation},
     pages = {277--282},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a18/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
AU  - S. A. Tikhomirov
TI  - On the Variety of Complete Punctual Flags of Length 5 in Dimension 2
JO  - Informatics and Automation
PY  - 2004
SP  - 277
EP  - 282
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a18/
LA  - ru
ID  - TRSPY_2004_246_a18
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%A S. A. Tikhomirov
%T On the Variety of Complete Punctual Flags of Length 5 in Dimension 2
%J Informatics and Automation
%D 2004
%P 277-282
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a18/
%G ru
%F TRSPY_2004_246_a18
A. S. Tikhomirov; S. A. Tikhomirov. On the Variety of Complete Punctual Flags of Length 5 in Dimension 2. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 277-282. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a18/

[1] Briançon J., “Description de $\mathrm{Hilb}^n\mathbf{C}\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl

[2] Granger M., Géométrie des schémas de Hilbert ponctuels, Mem. Soc. Math. France. Nouv. Sér., 8, Soc. Math. France, Paris, 1983 | MR | Zbl

[3] Iarrobino A., Punctual Hilbert schemes, Mem. AMS, 188, Amer. Math. Soc., Providence, RI, 1977 | MR

[4] Tikhomirov A. S., “Gladkaya model punktualnykh skhem Gilberta poverkhnosti”, Tr. MIAN, 208, 1995, 318–334 | MR | Zbl

[5] Tikhomirov S. A., “Punktualnye skhemy Gilberta maloi dliny v razmernostyakh 2 i 3”, Mat. zametki, 67:3 (2000), 414–432 | MR | Zbl

[6] Gulbrandsen M. G., A partial resolution of the punctual Hilbert scheme of a nonsingular surface, Preprint, Univ. Oslo, 2003 | MR