Hyperk\"ahler Manifolds and Seiberg--Witten Equations
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276
Voir la notice de l'article provenant de la source Math-Net.Ru
The mathematical properties of the so-called gauged nonlinear $\sigma$-model in dimension 4 are studied. An important element of the construction is a nonlinear generalization of the Dirac operator on a 4-manifold such that the fiber of the spinor vector bundle, a copy of quaternions $\mathbb H$, is replaced by a hyperkähler manifold endowed with a hyperkähler Lie group action and an additional symmetry. This Dirac operator is used to define Seiberg–Witten moduli spaces. An explicit Weitzenböck formula for such a Dirac operator is derived and applied to describe some properties of the Seiberg–Witten moduli spaces.
@article{TRSPY_2004_246_a17,
author = {V. Ya. Pidstrigach},
title = {Hyperk\"ahler {Manifolds} and {Seiberg--Witten} {Equations}},
journal = {Informatics and Automation},
pages = {263--276},
publisher = {mathdoc},
volume = {246},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/}
}
V. Ya. Pidstrigach. Hyperk\"ahler Manifolds and Seiberg--Witten Equations. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/