Hyperk\"ahler Manifolds and Seiberg--Witten Equations
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical properties of the so-called gauged nonlinear $\sigma$-model in dimension 4 are studied. An important element of the construction is a nonlinear generalization of the Dirac operator on a 4-manifold such that the fiber of the spinor vector bundle, a copy of quaternions $\mathbb H$, is replaced by a hyperkähler manifold endowed with a hyperkähler Lie group action and an additional symmetry. This Dirac operator is used to define Seiberg–Witten moduli spaces. An explicit Weitzenböck formula for such a Dirac operator is derived and applied to describe some properties of the Seiberg–Witten moduli spaces.
@article{TRSPY_2004_246_a17,
     author = {V. Ya. Pidstrigach},
     title = {Hyperk\"ahler {Manifolds} and {Seiberg--Witten} {Equations}},
     journal = {Informatics and Automation},
     pages = {263--276},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
TI  - Hyperk\"ahler Manifolds and Seiberg--Witten Equations
JO  - Informatics and Automation
PY  - 2004
SP  - 263
EP  - 276
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/
LA  - ru
ID  - TRSPY_2004_246_a17
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%T Hyperk\"ahler Manifolds and Seiberg--Witten Equations
%J Informatics and Automation
%D 2004
%P 263-276
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/
%G ru
%F TRSPY_2004_246_a17
V. Ya. Pidstrigach. Hyperk\"ahler Manifolds and Seiberg--Witten Equations. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/

[1] Anselmi D., Fre P., “Gauged hyperinstantons and monopole equations”, Phys. Lett. B., 347:3–4 (1995), 247–254 | MR

[2] Bagger J., Witten E., “Matter coupling in $N=2$ supergravity”, Nucl. Phys. B., 222 (1983), 1–10 | DOI | MR

[3] Boyer C., Galicki K., Mann B., “Quaternionic reduction and Einstein manifolds”, Commun. Anal. Geom., 1 (1993), 229–279 | MR | Zbl

[4] Cieliebak K., Gaio A. R., Salamon D. A., “J-holomorphic curves, moment maps, and invariants of Hamiltonian group actions”, Intern. Math. Res. Not., 2000, no. 16, 831–882 | MR | Zbl

[5] Dancer A., Swann A., “The geometry of singular quaternionic Kähler quotients”, Intern. J. Math., 8 (1997), 595–610 | DOI | MR | Zbl

[6] Galicki K., “A generalization of the momentum mapping construction for quaternionic Kähler manifolds”, Commun. Math. Phys., 108 (1987), 117–138 | DOI | MR | Zbl

[7] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. mat., 56:2 (1992), 279–371 | MR | Zbl

[8] Salamon S., Riemannian geometry and holonomy groups, Pitman Res. Notes Math. Ser., 201, Longman, Harlow, 1989 | MR | Zbl

[9] Swann A., “Hyperkähler and quaternionic Kähler geometry”, Math. Ann., 289:3 (1991), 421–450 | DOI | MR | Zbl

[10] Swann A., “Singular moment maps and quaternionic geometry”, Symplectic singularities and geometry of gauge fields (Warsaw, 1995), Banach Center Publ., 39, Pol. Acad. Sci., Warsaw, 1997, 143–153 | MR | Zbl

[11] Taubes C. H., “Nonlinear generalizations of a 3-manifold's Dirac operator”, Trends in mathematical physics (Knoxville, 1998), AMS/IP Stud. Adv. Math., 13, Amer. Math. Soc., Providence, RI, 1999, 475–486 | MR | Zbl

[12] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | MR | Zbl