Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_246_a17, author = {V. Ya. Pidstrigach}, title = {Hyperk\"ahler {Manifolds} and {Seiberg--Witten} {Equations}}, journal = {Informatics and Automation}, pages = {263--276}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/} }
V. Ya. Pidstrigach. Hyperk\"ahler Manifolds and Seiberg--Witten Equations. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a17/
[1] Anselmi D., Fre P., “Gauged hyperinstantons and monopole equations”, Phys. Lett. B., 347:3–4 (1995), 247–254 | MR
[2] Bagger J., Witten E., “Matter coupling in $N=2$ supergravity”, Nucl. Phys. B., 222 (1983), 1–10 | DOI | MR
[3] Boyer C., Galicki K., Mann B., “Quaternionic reduction and Einstein manifolds”, Commun. Anal. Geom., 1 (1993), 229–279 | MR | Zbl
[4] Cieliebak K., Gaio A. R., Salamon D. A., “J-holomorphic curves, moment maps, and invariants of Hamiltonian group actions”, Intern. Math. Res. Not., 2000, no. 16, 831–882 | MR | Zbl
[5] Dancer A., Swann A., “The geometry of singular quaternionic Kähler quotients”, Intern. J. Math., 8 (1997), 595–610 | DOI | MR | Zbl
[6] Galicki K., “A generalization of the momentum mapping construction for quaternionic Kähler manifolds”, Commun. Math. Phys., 108 (1987), 117–138 | DOI | MR | Zbl
[7] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. mat., 56:2 (1992), 279–371 | MR | Zbl
[8] Salamon S., Riemannian geometry and holonomy groups, Pitman Res. Notes Math. Ser., 201, Longman, Harlow, 1989 | MR | Zbl
[9] Swann A., “Hyperkähler and quaternionic Kähler geometry”, Math. Ann., 289:3 (1991), 421–450 | DOI | MR | Zbl
[10] Swann A., “Singular moment maps and quaternionic geometry”, Symplectic singularities and geometry of gauge fields (Warsaw, 1995), Banach Center Publ., 39, Pol. Acad. Sci., Warsaw, 1997, 143–153 | MR | Zbl
[11] Taubes C. H., “Nonlinear generalizations of a 3-manifold's Dirac operator”, Trends in mathematical physics (Knoxville, 1998), AMS/IP Stud. Adv. Math., 13, Amer. Math. Soc., Providence, RI, 1999, 475–486 | MR | Zbl
[12] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | MR | Zbl