On Correspondences of a~K3 Surface with Itself.~I
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 217-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3 surface with a polarization $H$ of degree $H^2=2rs$, $r,s\ge 1$. Assume that $H\cdot N(X)=\mathbb Z$ for the Picard lattice $N(X)$. The moduli space of sheaves over $X$ with the isotropic Mukai vector $(r,H,s)$ is again a K3 surface $Y$. We prove that $Y\cong X$ if there exists $h_1\in N(X)$ with $h_1^2=f(r,s)$, $H\cdot h_1\equiv 0\mathrm {\,mod}\ g(r,s)$, and $h_1$ satisfies some condition of primitivity. These conditions are necessary if $X$ is general with $\mathop {\mathrm{rk}}N(X)=2$. The existence of such kind of a riterion is surprising, and it also gives some geometric interpretation of elements in $N(X)$ with negative square. We describe all irreducible 18-dimensional components of the moduli space of pairs $(X,H)$ with $Y\cong X$. We prove that their number is always infinite. Earlier, similar results have been known only for $r=s$.
@article{TRSPY_2004_246_a15,
     author = {V. V. Nikulin},
     title = {On {Correspondences} of {a~K3} {Surface} with {Itself.~I}},
     journal = {Informatics and Automation},
     pages = {217--239},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a15/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On Correspondences of a~K3 Surface with Itself.~I
JO  - Informatics and Automation
PY  - 2004
SP  - 217
EP  - 239
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a15/
LA  - ru
ID  - TRSPY_2004_246_a15
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On Correspondences of a~K3 Surface with Itself.~I
%J Informatics and Automation
%D 2004
%P 217-239
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a15/
%G ru
%F TRSPY_2004_246_a15
V. V. Nikulin. On Correspondences of a~K3 Surface with Itself.~I. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 217-239. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a15/

[1] Abe T., “A remark on the 2-dimensional moduli spaces of vector bundles on K3 surfaces”, Math. Res. Lett., 7:4 (2002), 463–470 | MR

[2] Cossec F. R., “Reye congruences”, Trans. Amer. Math. Soc., 280:2 (1983), 737–751 | DOI | MR | Zbl

[3] James D. G., “On Witt's theorem for unimodular quadratic forms”, Pacif. J. Math., 26 (1968), 303–316 | MR | Zbl

[4] Madonna K., Nikulin V. V., “O klassicheskom sootvetstvii mezhdu poverkhnostyami K3”, Tr. MIAN, 241, 2003, 132–168 ; arXiv: /math.AG/0206158 | MR | Zbl

[5] Madonna C., Nikulin V. V., “On a classical correspondence between K3 surfaces, II”, Clay Math. Proc. (to appear) | MR

[6] Mukai Sh., “Symplectic structure of the moduli space of sheaves on an Abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[7] Mukai S., “On the moduli space of bundles on K3 surfaces”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, 341–413 | MR | Zbl

[8] Mukai Sh., “Duality of polarized K3 surfaces”, New trends in algebraic geometry (Warwick, 1996), LMS Lect. Notes Ser., 264, Cambridge Univ. Press, Cambridge, 1999, 311–326 | MR | Zbl

[9] Mukai Sh., Non-Abelian Brill–Noether theory and Fano 3-folds, , 1997 arXiv: /alg-geom/9704015 | MR

[10] Nikulin V. V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38, 1979, 75–137 | MR | Zbl

[11] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 111–177 | MR | Zbl

[12] Nikulin V. V., “O sootvetstviyakh mezhdu poverkhnostyami tipa K3”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 402–411 | MR | Zbl

[13] Nikulin V. V., On correspondences of a K3 surface with itself, II, , 2003 arXiv: /math.AG/0309348 | MR

[14] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 530–572

[15] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[16] I. R. Shafarevich (red.), Algebraicheskie poverkhnosti, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl

[17] Tyurin A. N., “Spetsialnye $0$-tsikly na polyarizovannykh poverkhnostyakh tipa K3”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 131–151 | MR

[18] Tyurin A. N., “Cycles, curves and vector bundles on algebraic surfaces”, Duke Math. J., 54:1 (1987), 1–26 | DOI | MR | Zbl

[19] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser. mat., 52:4 (1988), 813–852 | MR | Zbl

[20] Verra A., “The étale double covering of an Enriques' surface”, Rend. Sem. Mat. Univ. Politec. Torino, 41:3 (1983), 131–167 | MR | Zbl